Structural Calculations Cover Sheet

Project Number:

2019.089

Date:

January 3rd 2020

Project Name:

4270 Ardekani

Structural Design For: Structural design for a new residence. Construction Type: Conventional wood framed construction.

CODES

2015 International Building Code (IBC)

2015 NDS **ASCE 7-10**

LOADS

Floor Live Load

40 psf

Dead Loads

As required

Roof snow Load

25 psf

Deck Load

60 psf

Wind

110 mph, Exposure C, Per ASCE 7-10 Section 28, Kzt = 1.0

Seismic

Per ASCE 7-10 Section 12

Peak Ground Accelerations (PGA) based on OSHPD, by Lat/Lon.

PGA 1 sec = .538

PGA .2 sec = 1.401 %V = .144 * DL

Material Design Values

Soils

Minimum 2,000 psf allowed bearing (subject to field verification)

Per Geotech report by GEO Group Northwest, Inc. dated Nov. 4th 2019

Concrete

fc=2,500 psi; 5-1/2 sack mix, or alternate mix pre-approved by bldg. dept.

Reinforcing

Grade 40 or 60; Fy=40,000 psi minimum

Sawn Lumber

Joists, Rafters:

Hem-Fir #2 and better

Beams:

4x:

DF-L #2

6x :

DF-L #2

Posts:

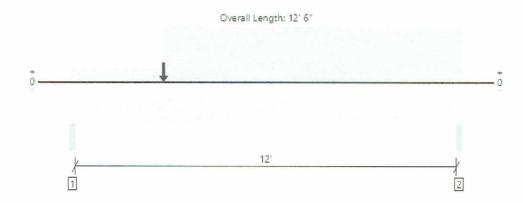
DF-L #2

Studs & Plates: Hem-Fir Standard

Glu-Lam Beams

24F-V4 for simple span beams, 24F-V8 for cantilevered beams

Parallam Beams


2.0E PSL, Fb=2,900 psi, Fv=290 psi, E=2.0*10^6 psi (minimum)

Microllam Beams 1.9E LVL, Fb=2,600 psi, Fv=285 psi, E=1.9*10^6 psi (minimum)

Anchor Bolts

ASTM A325 hold down bolts, F1554 Anchor Bolts, A307 other bolts

Roof, R1 12' Header 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal,

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4498 @ 12' 4 1/2"	10725 (3.00")	Passed (42%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	4177 @ 1' 3"	13409	Passed (31%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	14494 @ 5' 9 11/16"	30360	Passed (48%)	1.15	1.0 D + 1.0 S (Ali Spans)
Live Load Defl. (in)	0.165 @ 6' 1 7/8"	0.408	Passed (L/891)	7-7	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.276 @ 6' 1 7/8"	0.613	Passed (L/532)		1.0 D + 1.0 S (All Spans)

System: Wall Member Type: Header Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 12' 6" o/c unless detailed otherwise.
- . Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' 6" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 12' 3".
- · The effects of positive or negative camber have not been accounted for when calculating deflection.
- . The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - SPF	3.00"	3.00"	1.50"	1782	2620	4402	None
2 - Trimmer - SPF	3.00"	3.00"	1.50"	1817	2680	4497	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 6"	N/A	16.0		
1 - Uniform (PSF)	3' to 12' 6"	16'	16.0	25.0	Default Load
2 - Uniform (PSF)	0 to 3'	4'	16.0	25.0	
3 - Point (lb)	3'	N/A	775	1200	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

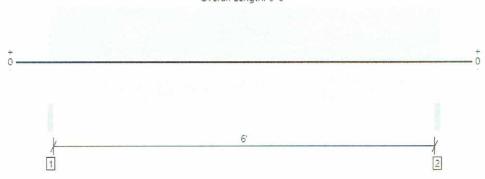
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

SUSTAINABLE FORESTRY INITIATIVE

Weyerhaeuser

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2019-089	
Brett.ajohnson@yahoo.com	4270	

12/10/2019 6:53:15 AM UTC


ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

File Name: 4270 Ardekani

Page 1 / 1

Roof, R2 6' Header 1 piece(s) 6 x 10 Hem-Fir No. 2

Overall Length: 6' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2442 @ 1 1/2"	6683 (3.00")	Passed (37%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1659 @ 1' 1/2"	5608	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3668 @ 3' 3"	5352	Passed (69%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.036 @ 3' 3"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.060 @ 3' 3"	0.313	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2015
Design Methodology: ASD

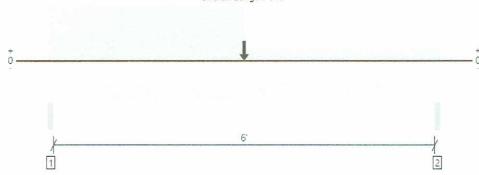
- · Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 6' 6" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 6' 6" o/c unless detailed otherwise.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - SPF	3.00"	3.00"	1.50"	979	1463	2442	None
2 - Trimmer - SPF	3.00"	3.00"	1.50"	979	1463	2442	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 6"	N/A	13.2		
1 - Uniform (PSF)	0 to 6' 6"	18'	16.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2014,089	
Brett.ajohnson@yahoo.com	4270	

Roof, R3 6' Header @ Girder Truss 1 piece(s) 6 x 10 Hem-Fir No. 2

Overall Length: 6' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2893 @ 1 1/2"	6683 (3.00")	Passed (43%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2111 @ 1' 1/2"	5608	Passed (38%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5079 @ 3' 3"	5352	Passed (95%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.044 @ 3' 2 1/16"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.074 @ 3' 2 1/16"	0.313	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System: Wall Member Type: Header Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 6' 6" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 6' 6" o/c unless detailed otherwise.
- · Applicable calculations are based on NDS.

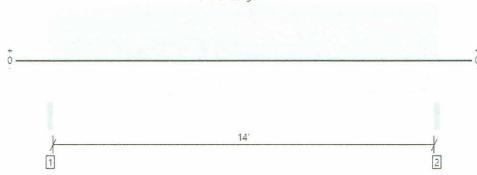
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - SPF	3.00"	3.00"	1.50"	1154	1739	2893	None
2 - Trimmer - SPF	3.00"	3.00"	1.50"	776	1148	1924	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 6"	N/A	13.2	44	
1 - Uniform (PSF)	0 to 3' 3"	18'	16.0	25.0	Default Load
2 - Uniform (PSF)	3' 3" to 6' 6"	4'	16.0	25.0	
3 - Point (lb)	3' 3"	N/A	700	1100	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2914.089	-
Brett.ajohnson@yahoo.com	4270	

12/9/2019 5:31:40 AM UTC ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

PASSED R4

Roof, R4 14' Roof Beam 1 piece(s) 5 1/4" x 11 7/8" 2.0E Parallam® PSL

Overall Length: 14' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6086 @ 1 1/2"	9844 (3.00")	Passed (62%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	5046 @ 1' 2 7/8"	13861	Passed (36%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	21309 @ 7' 3"	34332	Passed (62%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.340 @ 7' 3"	0.475	Passed (L/503)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.571 @ 7' 3"	0.712	Passed (L/300)		1.0 D + 1.0 S (All Spans)

System: Wall Member Type: Header Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

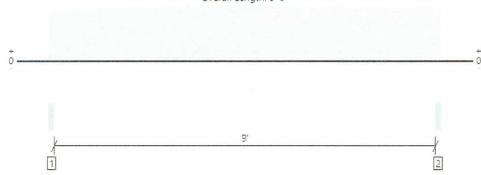
- · Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 14' 6" o/c unless detailed otherwise,
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' 6" o/c unless detailed otherwise.

	Bearing Length			Loads to Supports (ibs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - SPF	3.00"	3.00"	1.85"	2461	3625	6086	None
2 - Trimmer - SPF	3.00"	3.00"	1.85"	2461	3625	6086	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1,15)	Comments
0 - Self Weight (PLF)	0 to 14' 6"	N/A	19.5	-	
1 - Uniform (PSF)	0 to 14' 6"	20'	16.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2019.089	
Brett.ajohnson@yahoo.com	4270	

Roof, R5 9' Header 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

Overall Length: 9' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3952 @ 1 1/2"	10725 (3.00")	Passed (37%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3120 @ 1'	10057	Passed (31%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	8899 @ 4' 9"	17078	Passed (52%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.137 @ 4' 9"	0.308	Passed (L/811)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.228 @ 4' 9"	0.463	Passed (L/487)		1.0 D + 1.0 S (All Spans)

System: Wall Member Type: Header Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 9' 6" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 9' 6" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 3".
- · The effects of positive or negative camber have not been accounted for when calculating deflection.
- . The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - SPF	3.00"	3.00"	1.50"	1577	2375	3952	None
2 - Trimmer - SPF	3.00"	3.00"	1.50"	1577	2375	3952	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 6"	N/A	12.0		
1 - Uniform (PSF)	0 to 9' 6"	20'	16.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

SUSTAINABLE FORESTRY INITIATIVE

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2014-084	
Brett.ajohnson@yahoo.com	4270	

12/9/2019 5:48:23 AM UTC

John S. Apolis, P.E.

CSES, Inc.

Job number:

2019.089

Project: Architect: 4270 Ardekani

Date: Page number:

9-Dec-19 R6

2015 INT. Building Code (IBC)

2015 NDS

Beam Description:

Exterior Post @ South

Enter '1' for wind load:

1

Enter '1' for repetitive member:

Enter '1' for wet use:

Geometry	and loads:	
CONTRACTOR OF THE PERSON NAMED IN		

Emin

Geometry and toaus.					
Height	8	ft		w(d)	140.0 plf
P	6086	lbs		w(b)	0 plf
Le(d)	8	ft		Le(b)	8 ft
Material Properties:					
Fb1	850	psi	Fb(d)'		977.5 psi
Fb2	850	psi	Fb(b)'		977.5 psi
Fc	1300	psi	Fc'		944 psi
E	1.3	x10^6psi	E'		1.3 x10^6psi

Emin'

Selected Member: HF#2	5.5	X	5.5

0.47 x10^6psi

Member properties:		Variables	:		
Section Modulus (d):	27.7 in^3	Rb(d)		4.18	
Section Modulus (b):	27.7 in^3	Rb(b)		4.18	
Section Area:	30.3 in^2	С		0.8	
Member stresses: Prov	ided		Red	quired	
FcE(d)	1268 psi	>	fc	201 psi	

201 psi
201 psi
485 psi
0 psi

Bending and Axial Compression Check:

NDS 2010 EQ 3.9-3

0.63

1.0

0.47 x10^6psi

John S. Apolis, P.E.

CSES, Inc.

Job number:

2019.089

Project:

Architect:

4270 Ardekani

Date:

9-Dec-19

Page number:

R7

Post	Design	(Combined	Axial and	d Moment	Loading)
------	--------	-----------	-----------	----------	----------

2015 INT. Building Code (IBC)

2015 NDS

Beam Description:

Posts @ Stair Opening Exterior

Enter '1' for wind load:

Enter '1' for repetitive member:

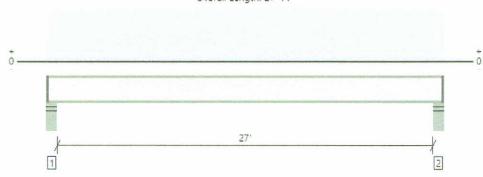
Enter '1' for wet use:

1.0

Geometry	and	lande
acomen A	anu	ivaus

NDS 2010 EQ 3.9-3

Height	20 ft		w(d)	52.0 plf
P	3000 lbs		w(b)	0 plf
Le(d)	20 ft	L	e(b)	20 ft
Material Properties:				
Fb1	2400 psi	Fb(d)'		2760 psi
	10 9300 1	12227002.000		PARTICIPATION IN


2400 psi	Fb(d)'	2760 psi
2400 psi	Fb(b)'	2760 psi
2500 psi	Fc'	383 psi
1.8 x10^6psi	E'	1.8 x10^6psi
0.91488 x10^6psi	Emin'	0.91488 x10^6psi
	2400 psi 2500 psi 1.8 x10^6psi	2400 psi Fb(b)' 2500 psi Fc' 1.8 x10^6psi E'

Selected Member: 1.8	SE PSL		5.5	X		5.5
			b			d
Member properties:			Variables:			
Section Modulus (d):	27.7 in^3		Rb(d)		6.61	
Section Modulus (b):	27.7 in^3		Rb(b)		6.61	
Section Area:	30.3 in^2		С		0.8	
Member stresses: Prov	vided			Re	quired	
FcE(d)	395 psi	>		fc	99 ps	•
FcE(b)	395 psi	>		fc	99 ps	i
FbE	25159 psi	>		fb(d)	1125 ps	i
FbE	25159 psi	>		fb(b)	0 ps	i
Bending and Axial Compression	Check:					

0.61

Upper, U1 Upper Floor Joists Long 1 piece(s) 16" TJI® 560 @ 16" OC

Overall Length; 27' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	961 @ 4 1/2"	1725 (3.50")	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)	
Shear (lbs)	936 @ 5 1/2"	2710	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)	
Moment (Ft-lbs)	6396 @ 13' 11 1/2"	12925	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.522 @ 13' 11 1/2"	0.679	Passed (L/625)		1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.678 @ 13' 11 1/2"	1.358	Passed (L/481)		1.0 D + 1.0 L (All Spans)	
TJ-Pro™ Rating	32	Any	Passed			

System: Floor
Member Type: Joist
Building Use: Residential
Building Code: IBC 2015
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 8' 3" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 27' 9" o/c unless detailed otherwise.
- · A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Total Accessories	Accessories
1 - Stud wall - SPF	5.50"	4.25"	1.75"	223	744	967	1 1/4" Rim Board
2 - Stud wall - SPF	5.50"	4.25"	1.75"	223	744	967	1 1/4" Rim Board

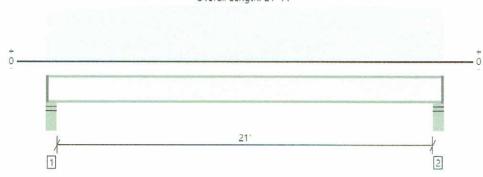
Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Floor Live (1.00)	Comments
1 - Uniform (PSF)	0 to 27' 11"	16"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator



(8) SUSTAINABLE FORESTRY INITIATIVE

12/18/2019 4:41:16 PM UTC

Upper, U2 Upper Floor Joists Typical 1 piece(s) 16" TJI® 110 @ 16" OC

Overall Length: 21' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	753 @ 4 1/2"	1375 (3.50")	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)	
Shear (lbs)	728 @ 5 1/2"	2145	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)	
Moment (Ft-lbs)	3883 @ 10' 11 1/2"	4280	Passed (91%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.405 @ 10' 11 1/2"	0.529	Passed (L/628)		1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.526 @ 10' 11 1/2"	1.058	Passed (L/483)		1.0 D + 1.0 L (All Spans)	
TJ-Pro™ Rating	38	Any	Passed		T	

System: Floor Member Type: Joist Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 3' 3" o/c unless detailed otherwise.
- . Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 21' 9" o/c unless detailed otherwise.
- · A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro $^{\mbox{\tiny TM}}$ Rating include: None.

	Bearing Length			Loads	to Supports (
Supports	Total	Available	Required	Required Dead Flo	Floor Live	Total	Accessories
1 - Stud wall - SPF	5.50"	4.25"	1.75"	175	584	759	1 1/4" Rim Board
2 - Stud wall - SPF	5.50"	4.25"	1.75"	175	584	759	1 1/4" Rim Board

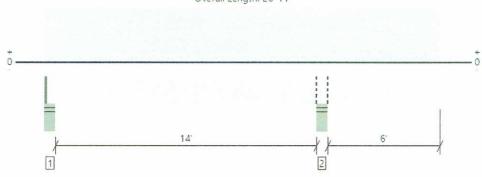
Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Floor Live (1.00)	Comments
1 - Uniform (PSF)	0 to 21' 11"	16"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator



(8) SUSTAINABLE FORESTRY INITIATIVE

12/18/2019 4:42:01 PM UTC

Upper, U3 Upper Floor Joists Cantilever 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL @ 16" OC

Overall Length: 20' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	1022 @ 14' 8 1/4"	4091 (5.50")	Passed (25%)		1.0 D + 1.0 L (All Spans)	
Shear (lbs)	482 @ 13' 1 1/2"	5320	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)	
Moment (Ft-lbs)	1624 @ 7' 2 5/8"	16179	Passed (10%)	1.00	1.0 D + 1.0 L (Alt Spans)	
Live Load Defl. (in)	0.059 @ 20' 11"	0.311	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)	
Total Load Defl. (in)	0.060 @ 20' 11"	0.623	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)	VIII. 1997
TJ-Pro™ Rating	66	Any	Passed	Tayle .		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 20' 10" o/c unless detailed otherwise.
- . Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 20' 10" o/c unless detailed otherwise.
- A 4% increase in the moment capacity has been added to account for repetitive member usage.
- · A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	1	Bearing Lengt	th	Loads	to Supports	(lbs)	
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - SPF	5,50"	4.25"	1.50"	99	402/-67	501/-67	1 1/4" Rim Board
2 - Stud wall - SPF	5.50"	5.50"	1.50"	236	786	1022	Blocking

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

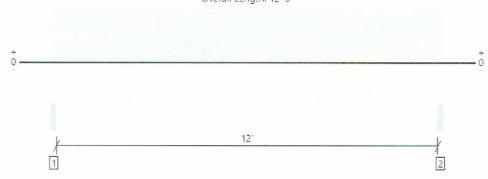
Vertical Load	Location (Side)	Spacing	(0.90)	Floor Live (1.00)	Comments
1 - Uniform (PSF)	0 to 20' 11"	16"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2019.089	
Brett.ajohnson@yahoo.com	4270	


12/10/2019 5:05:02 AM UTC

Upper, U4 12' Header 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 12' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	4650 @ 1 1/2"	10725 (3.00")	Passed (43%)		1.0 D + 1.0 L (All Spans)	
Shear (lbs)	3720 @ 1' 3"	11660	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)	
Pos Moment (Ft-lbs)	13957 @ 6' 3"	26400	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.199 @ 6' 3"	0.408	Passed (L/739)		1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.264 @ 6' 3"	0.613	Passed (L/556)		1.0 D + 1.0 L (All Spans)	: -

System: Wall Member Type : Header Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 12' 6" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' 6" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 12' 3".
- . The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

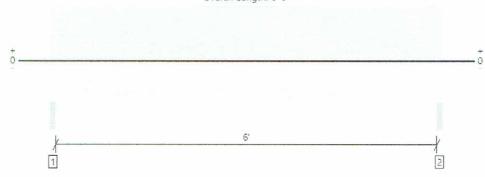
	В	learing Leng	th	Loads	to Supports (lbs)	
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - SPF	3.00"	3.00"	1.50"	1150	3500	4650	None
2 - Trimmer - SPF	3.00"	3.00"	1.50"	1150	3500	4650	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 6"	N/A	16.0	94	
1 - Uniform (PSF)	0 to 12' 6"	14'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator



(8) SUSTAINABLE FORESTRY INITIATIVE

12/10/2019 6:42:05 AM UTC

Upper, U5 6' Header 1 piece(s) 6 x 10 Hem-Fir No. 2

Overall Length: 6' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	2409 @ 1 1/2"	6683 (3.00")	Passed (36%)		1.0 D + 1.0 L (All Spans)	
Shear (lbs)	1637 @ 1' 1/2"	4877	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)	
Moment (Ft-lbs)	3619 @ 3' 3"	4654	Passed (78%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.044 @ 3' 3"	0.208	Passed (L/999+)		1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0,059 @ 3' 3"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)	

System: Wall Member Type: Header Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 6' 6" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 6' 6" o/c unless detailed otherwise.
- · Applicable calculations are based on NDS.

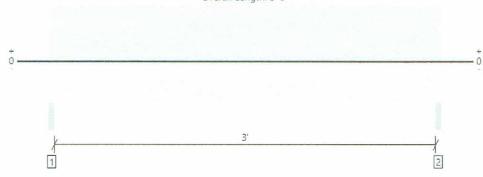
Supports	E	Bearing Length			to Supports (
	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - SPF	3.00"	3.00"	1.50"	589	1820	2409	None
2 - Trimmer - SPF	3.00"	3.00"	1.50"	589	1820	2409	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 6"	N/A	13.2		
1 - Uniform (PSF)	0 to 6' 6"	14'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2019.089	
Brett.ajohnson@yahoo.com	4270	

Upper, U6 Typical Header 2 piece(s) 2 x 8 Hem-Fir No. 2

Overall Length: 3' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1284 @ 1 1/2"	3645 (3.00")	Passed (35%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	657 @ 10 1/4"	2175	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	968 @ 1' 9"	2234	Passed (43%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.011 @ 1' 9"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.015 @ 1' 9"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System: Wall Member Type: Header Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 3' 6" o/c unless detailed otherwise.
- . Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 6" o/c unless detailed otherwise.
- · Applicable calculations are based on NDS.

		Bearing Length			to Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - SPF	3.00"	3.00"	1.50"	304	980	1284	None
2 - Trimmer - SPF	3.00"	3.00"	1.50"	304	980	1284	None

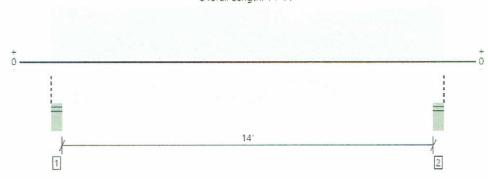
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 6"	N/A	5.5	+-	
1 - Uniform (PSF)	0 to 3' 6"	14'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2019.089	
Brett.ajohnson@yahoo.com	4270	


12/9/2019 6:55:08 PM UTC

Upper, U7 West Floor Beam 1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

Overall Length: 14' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6340 @ 4"	12856 (5.50")	Passed (49%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4994 @ 1' 7"	13118	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	21577 @ 7' 5 1/2"	33413	Passed (65%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.293 @ 7' 5 1/2"	0.475	Passed (L/585)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.389 @ 7' 5 1/2"	0.712	Passed (L/440)	72	1.0 D + 1.0 L (All Spans)

System: Floor Member Type: Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- . Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 14' 11" o/c unless detailed otherwise.
- . Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' 11" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 14' 3".
- . The effects of positive or negative camber have not been accounted for when calculating deflection.
- . The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

		Bearing Length			to Supports (
Supports	Total	Available	Required	Dead Floor Live Tot	Total	Accessories	
1 - Stud wall - SPF	5.50"	5.50"	2.71"	1567	4773	6340	Blocking
2 - Stud wall - SPF	5.50"	5.50"	2.71"	1567	4773	6340	Blocking

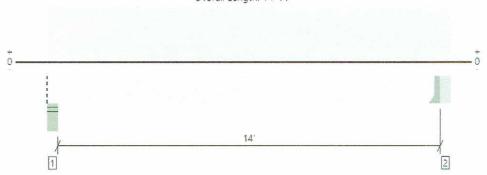
[·] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 14' 11"	N/A	18.0		
1 - Uniform (PSF)	0 to 14' 11" (Front)	16'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator



ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2019.039	
Brett.ajohnson@yahoo.com	4270	

12/9/2019 5:53:26 AM UTC

Upper, U8 East Floor Beam 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 14' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4520 @ 14' 5 1/2"	5363 (1.50")	Passed (84%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3880 @ 13' 5 1/2"	11660	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	15962 @ 7' 4 3/4"	26400	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.302 @ 7' 4 3/4"	0.471	Passed (L/562)	-	1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.402 @ 7' 4 3/4"	0.706	Passed (L/422)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- . Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 14' 6" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' 6" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 14' 1 1/2".
- . The effects of positive or negative camber have not been accounted for when calculating deflection.
- . The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports (
Supports	Total	Available	able Required	Dead	Floor Live	Total	Accessories	
1 - Stud wall - SPF	5.50"	5.50"	2.03"	1184	3550	4734	Blocking	
2 - Hanger on 12" SPF beam	5.50"	Hanger ¹	1.50"	1196	3610	4806	See note 1	

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- · At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- 1 See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie										
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
2 - Face Mount Hanger	OHU612-SDS3	4.00"	N/A	16-SDS25300	8-SDS25300					

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 14' 5 1/2"	N/A	16.0		
1 - Uniform (PSF)	0 to 14' 11" (Front)	12'	12.0	40.0	Default Load

Member Notes

4806lb < 5185 lb HUCQ612-SDS Hanger

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes			
Brett Johnson CSES	2019.089			
(253) 579-2158 Brett.ajohnson@yahoo.com	4270			

12/9/2019 6:01:10 AM UTC

John S. Apolis, P.E.

CSES, Inc.

Job number:

2019.089

Project:

Architect:

4270 Ardekani

Date:

8-Dec-19

Page number:

U9

Post Design (Combined Axial and Mome	ent Loading	()
--------------------------------------	-------------	----

2015 INT. Building Code (IBC)

2015 NDS

Beam Description:

NDS 2010 EQ 3.9-3

Interior Post

Enter '1' for wind load:

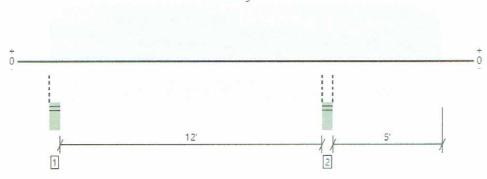
Enter '1' for repetitive member:

Enter '1' for wet use:

1.0

~		*
Geometry	and	loade.
Geometry	211117	ivaus.

Height	8	ft		w(d)	0.0 plf
P	12000	lbs		w(b)	0 plf
Le(d)	8	ft		Le(b)	8 ft
Material Properties:					
Fb1	850	psi	Fb(d)'		850 psi
Fb2	850	psi	Fb(b)'		850 psi


Fc	1300 psi	Fc'	887 psi
E	1.3 x10^6psi	E'	1.3 x10^6psi
Emin	0.47 x10^6psi	Emin'	0.47 x10^6psi

Selected Member: HF	#2		5.5 x		5.5
			b	W 1000 1000 1000 1000 1000 1000 1000 10	d
Member properties:		Variab	oles:		
Section Modulus (d):	27.7 in^3	Rb(d)		4.18	
Section Modulus (b):	27.7 in^3	Rb(b)		4.18	
Section Area:	30.3 in^2	c		0.8	
Member stresses: Prov	rided		Rec	quired	
FcE(d)	1268 psi	>	fc	397 psi	
FcE(b)	1268 psi	>	fc	397 psi	
FbE	32313 psi	>	fb(d)	0 psi	
FbE	32313 psi	>	fb(b)	0 psi	
Bending and Axial Compression	Check:				

0.20

Upper, U10 Case 1 Cantilever Lower Roof Beam 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 17' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7383 @ 12' 8 1/4"	12856 (5.50")	Passed (57%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3572 @ 11' 5 1/2"	13409	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	8598 @ 5' 8 13/16"	30360	Passed (28%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-lbs)	-8067 @ 12' 8 1/4"	23403	Passed (34%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.101 @ 6' 3 9/16"	0.412	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.152 @ 6' 2 3/16"	0.618	Passed (L/976)		1.0 D + 1.0 S (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- · Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 17' 11" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 17' 11" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 10' 9 9/16".
- \bullet Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 7' 5 5/16".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
 Applicable calculations are based on NDS.

Supports	Bearing Length			Loads	to Supports		
	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - SPF	5.50"	5.50"	1.50"	1297	2085	3382	Blocking
2 - Stud wall - SPF	5.50"	5.50"	3.16"	3004	4380	7384	Blocking

[.] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 17' 11"	N/A	16.0	5445	
1 - Uniform (PSF)	0 to 17' 11" (Front)	14'	16.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator



ForteWEB Software Operator	Job Notes		
Brett Johnson CSES (253) 579-2158	2019.089		
Brett.ajohnson@yahoo.com	4270		

12/9/2019 7:26:36 PM UTC

Upper, U11 Case 2 Cantilever Lower Roof Beam 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 17' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4804 @ 12' 8 1/4"	12856 (5.50")	Passed (37%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2640 @ 13' 11"	13409	Passed (20%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	1079 @ 4' 5 1/4"	23760	Passed (5%)	0.90	1.0 D (All Spans)
Neg Moment (Ft-lbs)	-8998 @ 12' 8 1/4"	23403	Passed (38%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.197 @ 17' 11"	0.349	Passed (2L/638)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.246 @ 17' 11"	0.523	Passed (2L/510)		1.0 D + 1.0 S (All Spans)

System: Floor Member Type: Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 17' 11" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 17' 11" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 8' 2 9/16".
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 16' 7 1/4".
- . The effects of positive or negative camber have not been accounted for when calculating deflection.
- . The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - SPF	5.50"	5.50"	1.50"	568	-463	568/- 463	Blocking
2 - Stud wall - SPF	5.50"	5.50"	2.06"	2276	2528	4804	Blocking

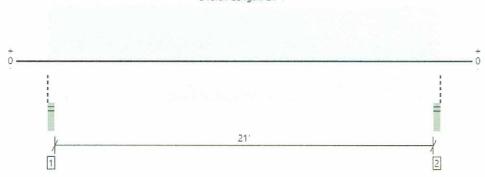
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 17' 11"	N/A	16.0		
1 - Uniform (PSF)	0 to 13' (Front)	14'	8.0	-	Default Load
2 - Uniform (PSF)	13' to 17' 11" (Front)	14'	16.0	30.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator



ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2014.089	
Brett.ajohnson@yahoo.com	4270	

12/9/2019 7:26:26 PM UTC

Upper, U12 North lower roof beam 1 piece(s) 3 1/2" x 16" 24F-V4 DF Glulam

Overall Length: 21' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3622 @ 2"	5206 (3.50")	Passed (70%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3076 @ 1' 7 1/2"	11377	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	18944 @ 10' 9 1/2"	34347	Passed (55%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.448 @ 10' 9 1/2"	0.708	Passed (L/569)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.716 @ 10' 9 1/2"	1.063	Passed (L/356)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- · Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 21' 7" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 21' 7" o/c unless detailed otherwise.
- \bullet Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 21' 3".
- . The effects of positive or negative camber have not been accounted for when calculating deflection.
- . The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

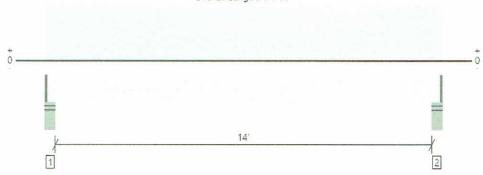
		Bearing Lengt	th	Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - SPF	3.50"	3.50"	2.43"	1356	2266	3622	Blocking
2 - Stud wall - SPF	3.50"	3.50"	2.43"	1356	2266	3622	Blocking

[·] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 21' 7"	N/A	13.6	-	
1 - Uniform (PSF)	0 to 21' 7" (Front)	7'	16.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES	2019.089	
(253) 579-2158 Brett.ajohnson@yahoo.com	4270	

Upper, U13 South 14' Header 1 piece(s) 5 1/4" x 11 7/8" 2.0E Parallam® PSL

Overall Length: 14' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4173 @ 4"	9483 (4.25")	Passed (44%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3411 @ 1' 5 3/8"	12053	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	14405 @ 7' 5 1/2"	29854	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.245 @ 7' 5 1/2"	0.356	Passed (L/698)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.386 @ 7' 5 1/2"	0.712	Passed (L/443)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential

Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 14' 9" o/c unless detailed otherwise.
- . Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' 9" o/c unless detailed otherwise.

		Bearing Lengt	th	Loads	to Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - SPF	5.50"	4,25"	1.87"	1546	2685	4231	1 1/4" Rim Board
2 - Stud wall - SPF	5.50"	4.25"	1.87"	1546	2685	4231	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 14' 9 3/4"	N/A	19.5		
1 - Uniform (PSF)	0 to 14' 11" (Front)	9'	12.0	40.0	Default Load
2 - Uniform (PLF)	0 to 14' 11" (Front)	N/A	80.0	-	

Member Notes

4231 lb < 5185 lb HUCQ612-SDS Hanger

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

SUSTAINABLE FORESTRY INITIATIVE

12/9/2019 9:03:57 PM UTC

John S. Apolis, P.E. CSES, Inc. Job number: 2019.089 Project: Date: 4270 Ardekani 9-Dec-19 Architect: Page number: U14 Post Design (Combined Axial and Moment Loading) 2015 INT. Building Code (IBC) 2015 NDS Beam Description: Exterior Post @ South Enter '1' for wind load: Enter '1' for repetitive member: Enter '1' for wet use: Geometry and loads: 8 ft Height 140.0 plf w(d)11000 lbs w(b) 0 plf 8 ft Le(b) 8 ft Le(d) **Material Properties:** Fb1 850 psi 977.5 psi Fb(d)' Fb2 850 psi Fb(b)' 977.5 psi Fc 1300 psi Fc' 944 psi 1.3 x10^6psi E' 1.3 x10^6psi E 0.47 x10^6psi Emin' 0.47 x10^6psi Emin Selected Member: HF#2 5.5 5.5 X

			D		U
Member properties:		Varia	ables:		
Section Modulus (d):	27.7 in^3	Rb(d))	4.18	
Section Modulus (b):	27.7 in^3	Rb(b))	4.18	
Section Area:	30.3 in^2	c		0.8	
Member stresses: Prov	vided		Rec	quired	
FcE(d)	1268 psi	>	fc	364 psi	
FcE(b)	1268 psi	>	fc	364 psi	
FbE	32313 psi	>	fb(d)	485 psi	
FbE	32313 psi	>	fb(b)	0 psi	
Bending and Axial Compression	Check:				
NDS 2010 EQ 3.9-3		0.84	<	1.0	

Job number: 2019.089 John S. Apolis, P.E. CSES, Inc. Project: 4270 Ardekani Date: 9-Dec-19 Page number: U15 Architect: Post Design (Combined Axial and Moment Loading) 2015 INT. Building Code (IBC) 2015 NDS Beam Description: Exterior Post @ South East Enter 'I' for wind load: 1 Enter '1' for repetitive member: Enter '1' for wet use: Geometry and loads: 10.0 plf Height 10 ft w(d)P 7500 lbs 0 plf w(b) Le(d) 10 ft Le(b) 10 ft **Material Properties:** 977.5 psi Fb1 850 psi Fb(d) 977.5 psi Fb2 850 psi Fb(b) 1300 psi Fc' 692 psi Fc 1.3 x10^6psi E E' 1.3 x10^6psi 0.47 x10^6psi Emin' 0.47 x10^6psi Emin 5.5 5.5 Selected Member: HF#2 X Variables: Member properties: Section Modulus (d): 27.7 in^3 Rb(d) 4.67 Section Modulus (b): 27.7 in^3 Rb(b) 4.67 Section Area: 30.3 in^2 0.8 Required Member stresses: Provided 812 psi fc 248 psi FcE(d) > FcE(b) 812 psi > fc 248 psi

>

>

0.21

fb(d)

fb(b)

54 psi

0 psi

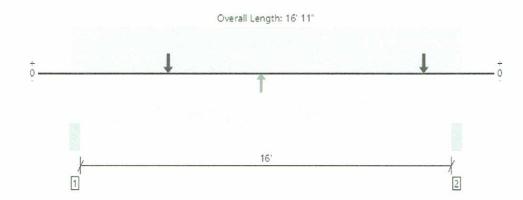
1.0

FbE

FbE

Bending and Axial Compression Check:

NDS 2010 EQ 3.9-3


25850 psi

25850 psi

Upper, U16 N Wall - Upper Floor Shear Wall Beam Case 1 1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7638 @ 4"	12856 (5.50")	Passed (59%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	6208 @ 1' 7"	15085	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	29808 @ 8' 5 1/2"	38424	Passed (78%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.406 @ 8' 5 1/2"	0.542	Passed (L/481)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.698 @ 8' 5 1/2"	0.813	Passed (L/279)		1.0 D + 1.0 S (All Spans)

System: Floor Member Type: Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- · Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 16' 11" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 16' 11" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 16'3".
- . The effects of positive or negative camber have not been accounted for when calculating deflection.
- · The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

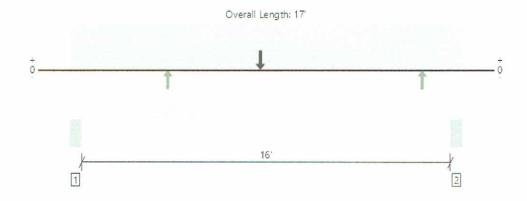
Supports		Bearing Length			Loads to Supports (lbs)				
	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Beam - SPF	5.50"	5.50"	3.27"	3198	677	4441	552/-552	8868/- 552	None
2 - Beam - SPF	5.50"	5.50"	3.27"	3198	677	4441	1131/-1131	9447/- 1131	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 16' 11"	N/A	18.0				
1 - Uniform (PSF)	0 to 16' 11" (Front)	21'	16.0	-	25.0	-	Default Load
2 - Uniform (PSF)	0 to 16' 11" (Front)	2'	12.0	40.0	-	-	
3 - Point (lb)	4' 3" (Front)	N/A				1683	UPLIFT See Page L2
4 - Point (lb)	8' 3" (Front)	N/A	12	-	k.	-1683	UPLIFT See Page L2
5 - Point (lb)	15' 3" (Front)	N/A	(4)		-	1683	UPLIFT See Page L2

Member Notes

1131 lb < 1705 lb CS16 Strap

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2019,039	
Brett.ajohnson@yahoo.com	4270	

12/10/2019 5:11:52 AM UTC

Upper, U17 N Wall - Upper Floor Shear Wall Beam Case 2 1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8549 @ 16' 7 1/2"	14025 (6.00")	Passed (61%)	/	1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	6208 @ 1' 7 1/2"	15085	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	29808 @ 8' 6"	38424	Passed (78%)	1.15	1.0 D + 1.0 S (All Spans)
Neg Moment (Ft-lbs)	-391 @ 15' 3"	41209	Passed (1%)	1.60	0.6 D + 0.7 E (All Spans)
Live Load Defl. (in)	0.406 @ 8' 6"	0.542	Passed (L/481)	-	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.698 @ 8' 6"	0.813	Passed (L/279)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 17' o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 17' o/c unless detailed otherwise.
- \bullet Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 16' 3".
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 1' 6 3/8".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

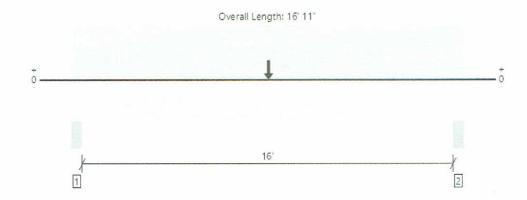
Supports		learing Lengt	th		Loads to	Supports	(lbs)		
	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Beam - SPF	6,00"	6.00"	3.34"	3213	680	4463	1392/-1392	9748/- 1392	None
2 - Beam - SPF	6.00"	6.00"	3.66"	3213	680	4463	2816/-2816	11172/- 2816	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 17'	N/A	18.0		(84)	**	
1 - Uniform (PSF)	0 to 17' (Front)	21'	16.0	- 1	25.0	-	Default Load
2 - Uniform (PSF)	0 to 17' (Front)	2'	12.0	40.0			
3 - Point (lb)	4' 3" (Front)	N/A	-	-	-	-4208	2.5 x UPLIFT See Page L2
4 - Point (lb)	8' 3" (Front)	N/A				4208	2.5 x UPLIFT See Page L2
5 - Point (lb)	15' 3" (Front)	N/A	-	-	-	-4208	2.5 x UPLIFT See Page L2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (RIm Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2019,089	
Brett.ajohnson@yahoo.com	4270	

12/10/2019 5:13:10 AM UTC

PASSED U/8

Upper, U18 SE Wall - Upper Floor Shear Wall Beam Case 1 1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7847 @ 16' 7"	12856 (5.50")	Passed (61%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	6208 @ 1' 7"	15085	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	29808 @ 8' 5 1/2"	38424	Passed (78%)	1.15	1.0 D + 1.0 S (All Spans)
Neg Moment (Ft-lbs)	-1263 @ 8' 6"	41209	Passed (3%)	1.60	0.6 D - 0.7 E (All Spans)
Live Load Defl. (in)	0.474 @ 8' 5 9/16"	0.542	Passed (L/412)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.766 @ 8' 5 1/2"	0.813	Passed (L/255)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System: Floor Member Type: Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- · Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 16' 11" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 16' 11" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 16' 3".
- \bullet Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 2' 8 7/8".
- . The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	E	Bearing Leng	th	Loads to Supports (lbs)					
	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Beam - SPF	5.50"	5.50"	3.35"	3198	677	4441	1531/-1531	9847/- 1531	None
2 - Beam - SPF	5.50"	5.50"	3.36"	3198	677	4441	1546/-1546	9862/- 1546	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 16' 11"	N/A	18.0		0.00		
1 - Uniform (PSF)	0 to 16' 11" (Front)	21'	16.0	-	25.0		Default Load
2 - Uniform (PSF)	0 to 16' 11" (Front)	2'	12.0	40.0			
3 - Point (lb)	8' 6" (Front)	N/A		-	=	3077	UPLIFT See Page L4 (TOP)

Member Notes

1546 lb < 1705 lb CS16 Strap

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

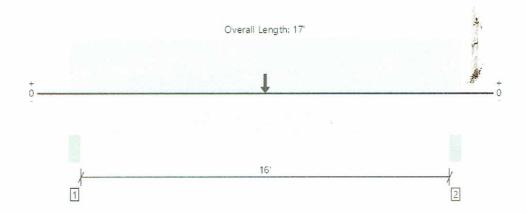
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2014.084	
Brett.ajohnson@yahoo.com	4270	

12/10/2019 5:12:49 AM UTC

ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

File Name: 4270 Ardekani


Page 1 / 2

1 piece(s) 5 1/2" x 14" 24F-V4 DF Glulam

Upper, U19 SE Wall - Upper Floor Shear Wall Beam Case 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor
Member Reaction (lbs)	9095 @ 4 1/2"	14025 (6,00")	Passed (65%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	Member Type : Drop Beam Building Use : Residential
Shear (lbs)	6175 @ 1' 8"	15644	Passed (39%)	1.15	1.0 D + 1.0 S (All Spans)	Building Code : IBC 2015
Pos Moment (Ft-lbs)	43886 @ 8' 6"	57493	Passed (76%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	Design Methodology : ASD
Neg Moment (Ft-lbs)	-14377 @ 8' 6"	44318	Passed (32%)	1.60	0.6 D - 0.7 E (All Spans)	
Live Load Defl. (in)	0.590 @ 8' 6"	0.542	Failed (L/330)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	
Total Load Defl. (in)	0.853 @ 8' 6"	0.813	Failed (L/229)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	

- Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 17' o/c unless detailed otherwise.
- · Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 17' o/c unless detailed otherwise
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 16' 3".
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 16'3".
- -761 lbs uplift at support located at 4 1/2". Strapping or other restraint may be required.
- · -761 lbs uplift at support located at 16' 7 1/2". Strapping or other restraint may be required.
- · The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

Supports	8	Bearing Lengt	th	Loads to Supports (lbs)						
	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories	
1 - Beam - SPF	6.00"	6.00"	3.89"	3219	680	4463	3847/-3847	12209/- 3847	None	
2 - Beam - SPF	6.00"	6.00"	3.89"	3219	680	4463	3847/-3847	12209/- 3847	None	

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 17'	N/A	18.7				
1 - Uniform (PSF)	0 to 17' (Front)	21'	16.0	-	25.0		Default Load
2 - Uniform (PSF)	0 to 17' (Front)	2'	12.0	40.0		-	
3 - Point (lb)	8' 6" (Front)	N/A		-	-	7693	UPLIFT See Page L4 (TOP)

UPLIFT x 2.5

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weverhaeuser.com/woodproducts/document-library.

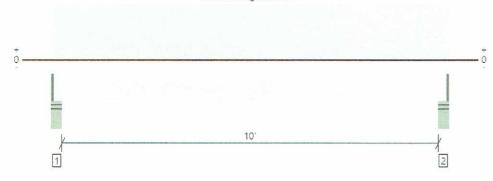
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2014.084	
Brett.ajohnson@yahoo.com	4270	

12/10/2019 5:13:16 AM UTC

ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

File Name: 4270 Ardekani


Page 1 / 2

PASSED

Upper, U20 Stair Opening Beam 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Overall Length: 10' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	3985 @ 4"	6322 (4.25")	Passed (63%)		1.0 D + 1.0 L (All Spans)	
Shear (lbs)	2729 @ 1' 9 1/2"	10640	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)	
Moment (Ft-lbs)	9775 @ 5' 5 1/2"	31114	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.073 @ 5' 5 1/2"	0.256	Passed (L/999+)		1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.097 @ 5' 5 1/2"	0.512	Passed (L/999+)		1.0 D + 1.0 L (All Spans)	

System : Floor Member Type : Flush Beam

Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 10' 9" o/c unless detailed otherwise.
- . Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 9" o/c unless detailed otherwise.

		Bearing Leng	th	Loads	to Supports ((lbs)	
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - SPF	5.50"	4.25"	2.68"	1004	3057	4061	1 1/4" Rim Board
2 - Stud wall - SPF	5.50"	4.25"	2.68"	1004	3057	4061	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

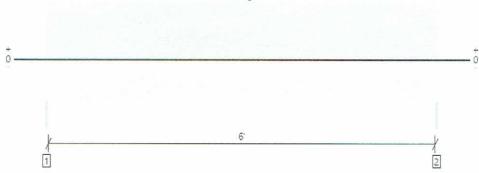
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live	Comments
0 - Self Weight (PLF)	1 1/4" to 10' 9 3/4"	N/A	16.3		Comments
1 - Uniform (PSF)	0 to 10' 11" (Front)	14'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES	2019.089	
(253) 579-2158 Brett.ajohnson@yahoo.com	4270	


12/10/2019 5:17:20 AM UTC

Upper, U21 North 6' Header 2 piece(s) 2 x 8 Hem-Fir No. 2

Overall Length: 6' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1317 @ 0	1823 (1.50")	Passed (72%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1010 @ 8 3/4"	2175	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2058 @ 3' 1 1/2"	2234	Passed (92%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.089 @ 3' 1 1/2"	0.208	Passed (L/845)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.117 @ 3' 1 1/2"	0.313	Passed (L/642)		1.0 D + 1.0 L (All Spans)

System: Wall Member Type: Header Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 6' 3" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 6' 3" o/c unless detailed otherwise.
- · Applicable calculations are based on NDS.

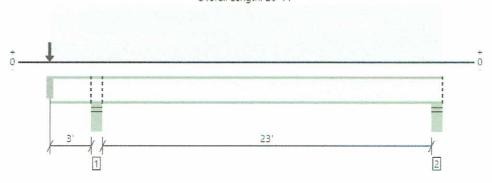
		Bearing Leng	th	Loads	to Supports (lbs)	
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - SPF	1.50"	1.50"	1.50"	317	1000	1317	None
2 - Trimmer - SPF	1.50"	1.50"	1.50"	317	1000	1317	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	5.5	-	
1 - Uniform (PSF)	0 to 6' 3"	8'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator



ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2014.089	
Brett.ajohnson@yahoo.com	4270	

12/10/2019 5:55:25 AM UTC

Main, M1 Long Cantilever Floor Joists 1 piece(s) 16" TJI® 560 @ 16" OC

Overall Length: 26' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2714 @ 3' 2 3/4"	3455 (5.25")	Passed (79%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	2071 @ 3'	3117	Passed (66%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	-6436 @ 3' 2 3/4"	14864	Passed (43%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.184 @ 0	0.200	Passed (2L/422)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.266 @ 0	0.323	Passed (2L/292)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
TJ-Pro™ Rating	44	40	Passed		

System: Floor
Member Type: Joist
Building Use: Residential
Building Code: IBC 2015
Design Methodology: ASD

- · Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/0.2") and TL (2L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 11' 3" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8' 3" o/c unless detailed otherwise.
- · A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	Bearing Length			- 10 - 10 - 10	Mark Transaction			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - SPF	5.50"	5.50"	3.50"	1089	1626	939	3654	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.75"	86	642/-112	-114	728/- 226	Blocking

[·] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

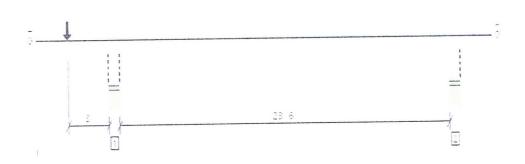
Vertical Loads	Location (Side)	Spacing	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 26' 11"	16"	12.0	40.0	127	Default Load
2 - Point (lb)	0	N/A	528	-	825	Roof
3 - Point (lb)	0	N/A	216	720	-	Floor

[·] Web stiffeners required at location 0 due to loads.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator



ForteWEB Software Operator	Job Notes			
Brett Johnson CSES (253) 579-2158	2014,089			
(233) 379-2136 Brett.ajohnson@yahoo.com	4270			

12/10/2019 6:09:41 AM UTC

Main, M2 Cantilever Floor Beams Case 1 1 piece(s) 5 1/4" x 16" 2.0E Parallam® PSL

Civeral Length: 27 5

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6952 @ 3' 2 3' 4"	12272 (5.50")	Passec (57%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Ail Spans)
Shear (lbs)	4167 @ 1'8'	18676	Passed (22%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	-13443 @ 3' 2 3' 4"	60297	Passed (22%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defi. (in)	0.175 @ 0	0.215	Passed (2L/444)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Air Spans)
Total Load Deft. (in)	0.219 @ 0	0.323	Passed (2L 354)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residentia Building Code: 18C 2015 Design Methodology ASD

- Deflection criteria: LL (L/360) and TL (L/240)
- Overhang deflection criteria: LL (2L, 360) and TL (2L/240).
- Top Edge Bracing (Luf: Top compression edge must be braced at 27-5" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 27° 5° ord unless detailed otherwise.

UPLIFT: 708 16 = 3565 16

	8	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories	
- Stud wall - SPF	5.50"	5.50°	3.12	2430	2886	1661	2117-2117	9094/- 2117	Blocking	
- Stud wa'l - SPF	\$.50"	5.50	1.50	297	654,-258	-198	252/-252	1203/- 708	Blocking	

120316 < 563516 HHU55.5/10

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 27 5	NA	26.3	**			
1 - Uniform (PSF)	0 to 27 5" (Front)	1'4"	12.0	40.0			Default Load
2 - Paint (ia)	() Front)	N.A				1865	Uplift See Page LS
	0 (Front)	N/A	979		1463	-	Roof
3 - Point (/b) 4 - Point (/b)	ρ (Front)	N-A	589	1820	-		Floor

Member Notes

2117 (b - (.25 x D) =4134 (b) = 1084 (b) Uplift. 1084 (b) Uplift < 1420 (b) (2) H8 Ties

Weyerhaeuser warrants that the samp of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to orcumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessones (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are thrift-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports. ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

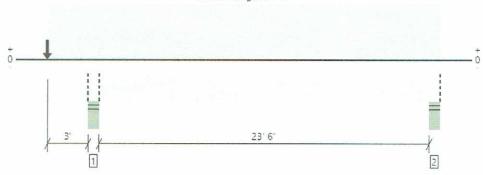
ForteWEB Software Operator	Job Notes	
Brett Johnson CSES	2019-084	
(253) 579-2158 Brett, ajohnson Ryahoo, com	4270	

12/10/2019 7:07:20 AM UTC

ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

File Name: 4270 Ardekani

Page 1 / 2



Main, M3 Cantilever Floor Beams Case 2 1 piece(s) 5 1/4" x 16" 2.0E Parallam® PSL

An excessive uplift of -2502 lbs at support located

Overall Length: 27' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)		
Member Reaction (lbs)	8197 @ 3' 2 3/4"	12272 (5.50")	Passed (67%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)		
Shear (lbs)	6242 @ 1' 8"	25984	Passed (24%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)		
Moment (Ft-lbs)	-20144 @ 3' 2 3/4"	83891	Passed (24%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)		
Live Load Defl. (in)	0.248 @ 0	0,215	Failed (2L/312)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)		
Total Load Defl. (in)	0.273 @ 0	0.323	Passed (2L/284)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)		

System: Floor Member Type : Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 27' 5" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 27' 5" o/c unless detailed otherwise.
- -326 lbs uplift at support located at 27' 1". Strapping or other restraint may be required.

	Bearing Length								
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Stud wall - SPF	5.50"	5.50"	3.67"	2007	2886	1661	5294/-5294	11848/- 5294	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.50"	347	654/-258	-198	631/-631	1632/- 1087	Blocking

[.] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 27' 5"	N/A	26.3	-	77		
1 - Uniform (PSF)	0 to 27' 5" (Front)	1' 4"	12.0	40.0	-		Default Load
2 - Point (lb)	0 (Front)	N/A	2	4	3	4663	2.5 x Uplift See Page L5
3 - Point (lb)	0 (Front)	N/A	979	-	1463		Roof
4 - Point (lb)	0 (Front)	N/A	216	1820	-	-	Floor

Member Notes

Shear and Moment OK by calculation for over strength factor

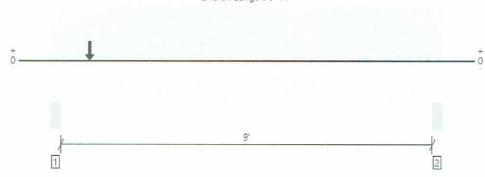
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2019-089	
Brett.ajohnson@yahoo.com	4270	

12/10/2019 7:09:32 AM UTC


ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

File Name: 4270 Ardekani

Page 1 / 2

Main, M4 9' Header @ South 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

Overall Length: 9' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11081 @ 4"	19663 (5.50")	Passed (56%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7024 @ 1' 4"	10203	Passed (69%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	12598 @ 4' 5 3/4"	20213	Passed (62%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.119 @ 4' 10 3/16"	0.308	Passed (L/932)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.208 @ 4' 10 1/8"	0.463	Passed (L/533)		1.0 D + 1.0 L (All Spans)

System: Wall Member Type : Header Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- · Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 9' 11" o/c unless detailed otherwise.
- · Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 9' 11" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 3".
- . The effects of positive or negative camber have not been accounted for when calculating deflection.
- . The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

		Bearing Length Loads to Supports (lbs)					Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories						
1 - Trimmer - SPF	5.50"	5.50"	3.10"	4739	6024	2431	13194	None						
2 - Trimmer - SPF	5.50"	5.50"	1.50"	2230	3029	189	5448	None						

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 11"	N/A	14.0			
1 - Uniform (PSF)	0 to 9' 11"	14'	12.0	40.0	14.5	Default Load
2 - Point (lb)	1,	N/A	2932	3500	2620	
3 - Uniform (PLF)	0 to 9' 11"	N/A	225.0	-	-	

Weyerhaeuser Notes

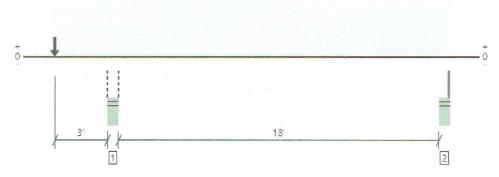
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

SUSTAINABLE FORESTRY INITIATIVE

Weyerhaeuser

Main, M5 West Cantilever Floor Beam


1 piece(s) 5 1/4" x 16" 2.0E Parallam® PSL

M5

An excessive uplift of -1008 lbs at support located at 21" 7" failed this produc

failed this product. OK BY DETAILING

Overall Length: 21' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	9906 @ 3' 2 3/4"	12272 (5.50")	Passed (81%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7801 @ 1' 8"	18676	Passed (42%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	-25180 @ 3' 2 3/4"	60297	Passed (42%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.192 @ 0	0.200	Passed (2L/404)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.301 @ 0	0.323	Passed (2L/258)		1.0 D + 0.75 L + 0.75 S (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- . Overhang deflection criteria: LL (2L/0.2") and TL (2L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 21' 10" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 21' 10" o/c unless detailed otherwise.

Supports	В	Bearing Length			Loads to Supp			
	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - SPF	5.50"	5.50"	4.44"	4013	4623	3234	11870	Blocking
2 - Stud wall - SPF	5.50"	4.25"	1.50"	-177	380/-623	-484	380/- 1284	1 1/4" Rim Board

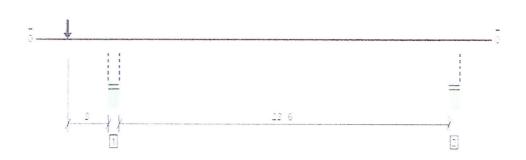
- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- · Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 21' 9 3/4"	N/A	26.3		122	
1 - Uniform (PSF)	0 to 21' 11" (Front)	1'	12.0	40.0	381	Default Load
2 - Point (lb)	0 (Front)	N/A	3000	3500	2750	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator



ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2019,089	
Brett.ajohnson@yahoo.com	4270	

12/10/2019 6:54:19 AM UTC

Main, M6 Cantilever Floor Beams Case 3 1 piece(s) 7" x 16" 2.0E Parallam® PSL

Overal Length: 27 5

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are honzontal,

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (ibs)	11073 @ 3' 2 3 4"	16363 (5.50")	Passed (68%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7692 @ 1'8"	24901	Passed (31%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	24823 @ 3' 2 3/4"	80396	Passed (31%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.210 @ 0	0.215	Passed (2L/368)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)
Total Load Def. (in)	0.290 @ 0	0.323	Passed (2L, 268)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)

System Floor
Member Type Drop Beam
Building Use Hesidendal
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- . Overhang deflection criteria: LL [2L/360] and TL (2L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 27' 5" o/c unless detailed otherwise.
- Fottom Edge Bracing (Lu) Bottom compression edge must be braced at 27-5" o/c unless detailed otherwise.
- -415 lbs uplift at support located at 27" 1". Strapping or other restraint may be required.
- Member should be side-loaded from both sides of the member or braced to prevent rotation

UPITET: 1092 16 < 3565 16

	Bearing Length								
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Stud wall - SPF	5.50	5.50	3.72*	4134	4794	2975	2117/-2117	14020/- 2117	Blocking
2 - Stud wall SPF	5.50	5.50	1.50	216	654, 485	-355	252 -252	1122/- 1092	Blocking

1122 16 < 5635 H HHU5 7,25/10

Blocking Panels are assumed to carrying loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	5now (1.15)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 27° 5°	N/A	35.1			-4	
1 - Uniform (PSF)	0 to 27' 5" (Front)	11.41	12.0	40.0			Default Load
2 - Point (lb)	0 (Front)	N/A				1865	Uplift See Page L5
3 • Point (ib)	0 (Front)	N-A	1800		2620		Roof
4 - Point (lb)	6 (Front)	N/A	1150	3500			Floor

Member Notes

2117 lb - (25 x Di =4134 lb) = 1084 lb Uplift 1084 lb Uplift < 1420 lb (2) H8 Tres

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that the calculation is compatible with the overall project. Accessones (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-barry, certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products. have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports. Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com.woodproducts document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Brett Johnson CSFS (253: 579-2158	2019.089
Brett.ajohnson 2 yahoo com	4270

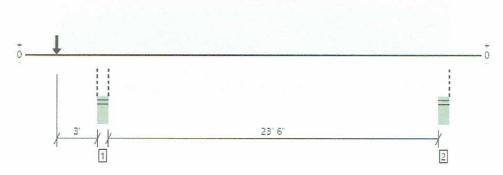
12/10/2019 6:55:20 AM UTC

ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

File Name: 4270 Ardekanı

270 AIGERGIA

Main, M7 Cantilever Floor Beams Case 4


1 piece(s) 7" x 16" 2.0E Parallam® PSL

An excessive uslift of 1238 lbs at support located at 3' 2-3/4" failed this product.

Overall Length: 27' 5'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12720 @ 3' 2 3/4"	16363 (5.50")	Passed (78%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7674 @ 1' 8"	24901	Passed (31%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	-24765 @ 3' 2 3/4"	80396	Passed (31%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defi. (in)	0.265 @ 0	0.215	Failed (2L/292)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.344 @ 0	0.323	Failed (2L/226)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential

Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 27' 5" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 27' 5" o/c unless detailed otherwise.
- -743 lbs uplift at support located at 27' 1". Strapping or other restraint may be required.
- · Member should be side-loaded from both sides of the member or braced to prevent rotation.

Supports	L L	Bearing Length			Loads to Supports (lbs)					
	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories	
1 - Stud wall - SPF	5.50"	5.50"	4.28"	4114	4794	2975	5294/-5294	17177/- 5294	Blocking	
2 - Stud wall - SPF	5.50"	5.50"	1.50"	218	654/-485	-355	631/-631	1503/- 1471	Blocking	

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 27' 5"	N/A	35.1		-	-	
1 - Uniform (PSF)	0 to 27' 5" (Front)	1' 4"	12.0	40.0	941	-	Default Load
2 - Point (lb)	0 (Front)	N/A	-	-	-	4663	2.5 x Uplift See Page L5
3 - Point (lb)	0 (Front)	N/A	1782	-	2620	-	Roof
4 - Point (lb)	0 (Front)	N/A	1150	3500	960	740	Floor

Member Notes

Shear and Moment OK by calculation for over strength factor

Weyerhaeuser Notes

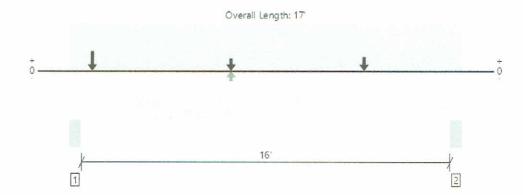
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158 Brett.ajohnson@yahoo.com	2014.084	
	4270	

12/10/2019 6:57:56 AM UTC

ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2


File Name: 4270 Ardekani

MEMBER REPORT

PASSED M8

Main, M8 16' Garage Door Header Case 1 1 piece(s) 5 1/2" x 18" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	19179 @ 4 1/2"	21450 (6.00")	Passed (89%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	10674 @ 2'	17490	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	47640 @ 7' 4 5/16"	58109	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.308 @ 8' 5 9/16"	0.542	Passed (L/634)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.471 @ 8' 5 1/2"	0.813	Passed (L/414)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2015
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 17' o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 17' o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 0.98 that was calculated using length L = 16'3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- . The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

	Bearing Length		th						
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Trimmer - SPF	6.00"	6.00"	5.36"	7012	11222	4101	1286/-1286	23621/- 1286	None
2 - Trimmer - SPF	6.00"	6.00"	3.12"	3727	7412	1860	831/-831	13830/- 831	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 17'	N/A	24.1				
1 - Uniform (PSF)	0 to 17'	15'	12.0	40.0	(2)	0-1	Default Load
2 - Point (lb)	1'	N/A	4134	4794	2975	2117	
3 - Point (lb)	7'	N/A	1568	1820	1493	-2117	
4 - Point (lb)	12' 9"	N/A	1568	1820	1493	2117	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

SUSTAINABLE FORESTRY INITIATIVE

12/10/2019 7:52:53 AM UTC

ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

MEMBER REPORT

PASSED M9

Main, M9 16' Garage Door Header Case 2 1 piece(s) 5 1/2" x 18" 24F-V4 DF Glulam

Overall Length: 17'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	20193 @ 4 1/2"	21450 (6.00")	Passed (94%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	10674 @ 2'	17490	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	47640 @ 7' 4 5/16"	58109	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.313 @ 8' 2 9/16"	0.542	Passed (L/623)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.476 @ 8' 3 7/16"	0.813	Passed (L/410)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2015
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 17' o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 17' o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 0.98 that was calculated using length L = 16'3".
- · The effects of positive or negative camber have not been accounted for when calculating deflection.
- . The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Trimmer - SPF	6.00"	6.00"	5.65"	7012	11222	4101	3217/-3217	25552/- 3217	None
2 - Trimmer - SPF	6.00"	6.00"	3.29"	3727	7412	1860	2076/-2076	15075/- 2076	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 17'	N/A	24.1				
1 - Uniform (PSF)	0 to 17'	15'	12.0	40.0		141	Default Load
2 - Point (lb)	1'	N/A	4134	4794	2975	5293	
3 - Point (lb)	7'	N/A	1568	1820	1493	-5293	
4 - Point (lb)	12' 9"	N/A	1568	1820	1493	5293	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

(3) SUSTAINABLE FORESTRY INITIATIVE

ForteWEB Software Operator	Job Notes			
Brett Johnson CSES (253) 579-2158	2919.089			
Brett.ajohnson@yahoo.com	4270			

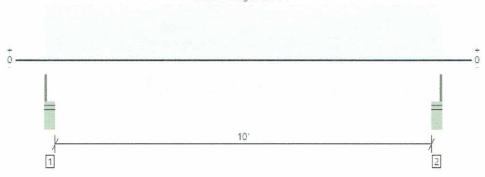
12/10/2019 7:50:50 AM UTC ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

File Name: 4270 Ardekani

Page 1 / 1

John S. Apolis, P.E. CSES, Inc. Job number: 2019.089 Project: 4270 Ardekani Date: 10-Dec-19 Architect: Page number: M10 Post Design (Combined Axial and Moment Loading) 2015 Seattle Building Code (SBC) 2015 NDS Beam Description: Garage Door Posts Enter 'l' for wind load: Enter '1' for repetitive member: Enter '1' for wet use: Geometry and loads: Height 7 ft w(d) 141.0 plf 24000 lbs w(b) 0 plf Le(d) 7 ft Le(b) 7 ft **Material Properties:** Fb1 1000 psi Fb(d)' 1150 psi Fb2 1000 psi Fb(b)' 1150 psi Fc 1500 psi Fc' 1321 psi E 1.7 x10^6psi E' 1.7 x10^6psi Emin 0.62 x10^6psi Emin' 0.62 x10^6psi Selected Member: DF#1 5.5 5.5 X

			ь	d
Member properties:		Varia	ables:	
Section Modulus (d):	27.7 in^3	Rb(d))	3.91
Section Modulus (b):	27.7 in^3	Rb(b))	3.91
Section Area:	30.3 in^2	С		0.8
Member stresses: Prov	vided		Rec	quired
FcE(d)	2185 psi	>	fc	793 psi
FcE(b)	2185 psi	>	fc	793 psi
FbE	48714 psi	>	fb(d)	374 psi
FbE	48714 psi	>	fb(b)	0 psi
Bending and Axial Compression	Check:			
NDS 2010 EQ 3.9-3		0.87	<	1.0



MEMBER REPORT

Main, M11 Flush Stair Beam 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Overall Length: 10' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	3985 @ 4"	6322 (4.25")	Passed (63%)		1.0 D + 1.0 L (All Spans)	
Shear (lbs)	2729 @ 1' 9 1/2"	10640	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)	-7/100
Moment (Ft-lbs)	9775 @ 5' 5 1/2"	31114	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.073 @ 5' 5 1/2"	0.256	Passed (L/999+)		1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.097 @ 5' 5 1/2"	0.512	Passed (L/999+)		1.0 D + 1.0 L (All Spans)	

System: Floor Member Type: Flush Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 10' 9" o/c unless detailed otherwise.
- . Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 9" o/c unless detailed otherwise.

		Bearing Length			to Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - SPF	5.50"	4.25"	2.68"	1004	3057	4061	1 1/4" Rim Board
2 - Stud wall - SPF	5.50"	4,25"	2.68"	1004	3057	4061	1 1/4" Rim Board

[·] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 10' 9 3/4"	N/A	16.3		
1 - Uniform (PSF)	0 to 10' 11" (Front)	14'	12.0	40.0	Default Load

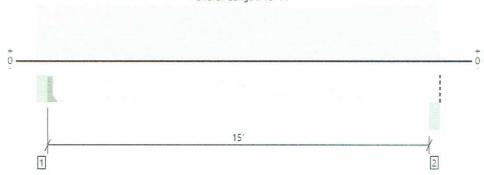
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes			
Brett Johnson CSES	2019.089			
(253) 579-2158 Brett.ajohnson@yahoo.com	4270			

12/12/2019 9:44:19 PM UTC


ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

John S. Apolis, P.E. CSES, Inc. Job number: 2019.089 Project: 4270 Ardekani Date: 12-Dec-19 Architect: Page number: M12 Post Design (Combined Axial and Moment Loading) 2015 Seattle Building Code (SBC) **2015 NDS** Beam Description: Interior Post Enter '1' for wind load: Enter '1' for repetitive member: Enter '1' for wet use: Geometry and loads: Height 8 ft w(d) plf 25000 lbs w(b) 0 plf Le(d) 8 ft Le(b) 8 ft Material Properties: Fb1 850 psi 850 psi Fb(d)' Fb2 850 psi Fb(b)' 850 psi Fc 1300 psi Fc' 887 psi 1.3 x10^6psi E' E 1.3 x10^6psi Emin 0.47 x10^6psi Emin' 0.47 x10^6psi Selected Member: HF#2 5.5 5.5 X

				The second secon	
			b		d
Member properties:		Variabl	es:		
Section Modulus (d):	27.7 in^3	Rb(d)		4.18	
Section Modulus (b):	27.7 in^3	Rb(b)		4.18	
Section Area:	30.3 in^2	c		0.8	
Member stresses: Pro	vided		Rec	quired	
FcE(d)	1268 psi	>	fc	826 psi	
FcE(b)	1268 psi	>	fc	826 psi	
FbE	32313 psi	>	fb(d)	0 psi	
FbE	32313 psi	>	fb(b)	0 psi	
ing and Axial Compression	Check:				
2010 EQ 3.9-3		0.87	<	1.0	

Main, M13 Deck Joists 1 piece(s) 2 x 12 Hem-Fir No. 2 @ 12" OC

Overall Length: 15' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal,

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	543 @ 5 1/2"	911 (1.50")	Passed (60%)		1.0 D + 1.0 L (All Spans)	
Shear (lbs)	476 @ 1' 4 3/4"	1688	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)	
Moment (Ft-lbs)	2048 @ 8'	2577	Passed (79%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.302 @ 8'	0.377	Passed (L/599)		1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.362 @ 8'	0.754	Passed (L/499)		1.0 D + 1.0 L (All Spans)	
TJ-Pro™ Rating	N/A	N/A				

System: Floor
Member Type: Joist
Building Use: Residential
Building Code: IBC 2015
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- . Top Edge Bracing (Lu): Top compression edge must be braced at 4' 11" o/c unless detailed otherwise.
- . Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 15' 6" o/c unless detailed otherwise.
- · A 15% increase in the moment capacity has been added to account for repetitive member usage.
- · Applicable calculations are based on NDS.
- · No composite action between deck and joist was considered in analysis.

J/0# 1132#
LU5210

576 < 1135 L

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 11 1/4" SPF beam	5.50"	Hanger ¹	1.50"	96	480	576	See note 1
2 - Beam - SPF	5.50"	5.50"	1.50"	95	475	570	Blocking

- · Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Floor Live (1.00)	Comments
1 - Uniform (PSF)	0 to 15' 11"	12"	12.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Brett Johnson CSES (253) 579-2158	2014.089	
Brett.ajohnson@yahoo.com	4270	

12/16/2019 7:16:24 PM UTC

ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2

File Name: 4270 Ardekani

Page 1 / 1

John S. Apolis, P.E.

CSES, Inc.

Job number: 2019.089

Project:

4270

Date:

19-Dec-19

Architect:

Page number:

M14

BEAM DESIGN (Uniform Load, Simple Span)

2015 INT. Building Code (IBC)

2015 NDS

HUCR6/2-SDS

Beam Description:

Deck beam

Enter 'I' for incised PT lumber:	1	Enter 1 for snow load:
		Enter '1' for repetitive member:
		Enter '1' for wet use:
Enter '1' for fully supported:	1	Enter 'I' for reduced live load:

Geometry and Loads:

Span:	21 ft	Tributary Width:	8 ft
DL unit load:	12 psf	LL unit load:	60 psf
Add'l unif. DL:	0 lb/ft	Add'l unif. LL:	0 lb/ft
Kll * At:	336 ft^2	Reduced LL:	60 psf

DL uniform load:	96	lb/ft	Max DL reaction:	1,008	lbs
LL uniform load:	480	lb/ft	Max LL reaction:	5,040	lbs
Total load:	576	lb/ft	Max Total reaction:	6,048	lbs

Material Properties:

E	1.8 x 1	10^6 psi	E'	1.8	x 10^6 psi
Fb	2400 psi	i	Fb'	1831	psi
Fv	265 psi	i	Fv'	212	psi
Fc perp	650 psi	i	Fc perp'	520	psi
(Allow	able design va	lues include modi	ification factors per NDS	\$ 2012)	

Deflection analysis:

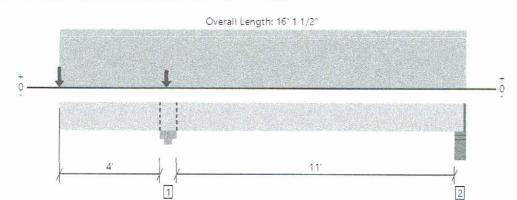
For total load:			Allowed deflection criteria, span	360	
For LL only:			Allowed deflection criteria, span	480	
Max. allowed total defl:	0.700	in	Max LL defl:	0.525	in
Total defl. * I:	1400.3		Required I:	2,000	in^4
LL defl. * I:	1166.9		Required I:	2,223	in^4
Actual deflections:	TOTAL		0.524 inches LL:	0.437	inches

Force analysis: Max Shear: 6048 lbs

Max. moment: 31752 ft-lb Shear @ d = 5184 lbs < 5/85 U

Selected Member: GLB 5.500 x 18

Member properties:	Provided:		Required:
Moment of inertia:	2,673.0 in^4		2,222.6 in^4
Section Modulus:	297.0 in^3		208.1 in^3
Section Area:	99.0 in^2		36.7 in^2
Bearing Area:			11.6 in^2
Minimum bearing dimensions:	5.5	X	2.1 inches



MEMBER REPORT

Main, M15 Cantilever Deck Beams 1 piece(s) 5 1/2" x 18" 24F-V4 DF Glulam

An excessive uplift of -2101 lbs at support located at 15' 9 1/2" failed this product.

All locations are measured from the outside face of left support (or left cantilever end), All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	20884 @ 4' 4"	28600 (8.00")	Passed (73%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	8736 @ 2' 6"	17490	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	10860 @ 10' 10 1/8"	59400	Passed (18%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-lbs)	-36574 @ 4' 4"	44921	Passed (81%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.230 @ 0	0,289	Passed (2L/452)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.279 @ 0	0.433	Passed (2L/374)		1.0 D + 1.0 L (Alt Spans)

System: Floor

Member Type : Flush Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- . Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Top Edge Bracing (Lu); Top compression edge must be braced at 16' o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 16' o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 10 11/16".
- Critical negative moment adjusted by a volume factor of 0.98 that was calculated using length L = 15' 9 1/2".
- . The effects of positive or negative camber have not been accounted for when calculating deflection,
- . The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

Supports		Bearing Length		Loads to Supports (lbs)				
	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Column Cap - steel	8.00"	8.00"	5.84"	6103	14781	3500	24384	Blocking
2 - Stud wall - SPF	5.50"	4.25"	1.97"	320	4365/-2421	*	4685/- 2421	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- · Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 1/4"	N/A	24.1	- 1		
1 - Uniform (PSF)	0 to 16' 1 1/2" (Front)	12'	12.0	60.0	-	Default Load
2 - Point (lb)	0 (Front)	N/A	1476	5040	-	
3 - Point (lb)	4' 3" (Front)	N/A	2240		3500	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values, Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes 2014.089 Brett Johnson CSES (253) 579-2158 Brett.ajohnson@yahoo.com

12/19/2019 9:11:41 PM UTC

ForteWEB v2.1, Engine: V7.3.2.309, Data: V7.2.0.2 File Name: 4270 Ardekani John S. Apolis, P.E.

CSES, Inc.

Job number:

2019.089

Project:

Architect:

4270 Ardekani

Date:

19-Dec-19

Page number:

M16

Post Design (Combined Axial and Moment Loading)

2015 INT. Building Code (TBC)

2015 NDS

Beam Description:

Deck posts

Enter '1' for wind load:

1

Enter '1' for repetitive member:

Enter '1' for wet use:

Geometry and loads:

Height 8 ft
$$30250 \text{ lb}$$
 w(d) 10.0 plf w(b) 0 plf Le(d) 8 ft Le(b) 8 ft

Le(d)

8 ft Le(b)

Material Properties:

erties:			
Fb1	850 psi	Fb(d)'	977.5 psi
Fb2	850 psi	Fb(b)'	977.5 psi
Fc	1300 psi	Fc'	944 psi
E	1.3 x10^6psi	E'	1.3 x10^6psi
Emin	0.47 x10^6psi	Emin'	0.47 x10^6psi

Selected	Member:	HF#2

Member properties:

5.5	X	5.5
b		d
Variables:		

Section Modulus (d):	27.7 in^3	Rb(d)		4.18	
Section Modulus (b):	27.7 in^3	Rb(b)		4.18	
Section Area:	30.3 in^2	c		0.8	
Member stresses: Pr	ovided		Red	quired	
FcE(d)	1268 psi	>	fc	843 psi	
FcE(b)	1268 psi	>	fc	843 psi	
FbE	32313 psi	>	fb(d)	35 psi	
FbE	32313 psi	>	fb(b)	0 psi	

Bending and Axial Compression Check:

NDS 2010 EQ 3.9-3

0.90

1.0

John S. Apolis, P.E.

CSES, Inc.

Job number: 2019.089

Project:

4270

Date:

19-Dec-19

Architect:

Page number:

M17

BEAM DESIGN (Uniform Load, Simple Span)

2015 INT. Building Code (IBC)

2015 NDS

Beam Description:

Deck Header Below

Enter '1' for incised PT lumber:

Enter '1' for snow load:

Enter '1' for repetitive member:

Enter '1' for wet use:

Enter '1' for fully supported: 1 Enter '1' for reduced live load:

Geometry and Loads:

 Span:
 16 ft
 Tributary Width:
 8 ft

 DL unit load:
 12 psf
 LL unit load:
 60 psf

 Add'l unif. DL:
 24 lb/ft
 Add'l unif. LL:
 40 lb/ft

Kll * At: 256 ft^2 Reduced LL: 60 psf

DL uniform load: 120 lb/ft Max DL reaction: 960 lbs
LL uniform load: 520 lb/ft Max LL reaction: 4,160 lbs
Total load: 640 lb/ft Max Total reaction: 5,120 lbs

Material Properties:

E 1.8 x 10⁶ psi E' 1.8 x 10⁶ psi Fb 2400 psi Fb' 2400 psi Fv 265 psi Fv' 265 psi Fc perp 650 psi Fc perp' 650 psi (Allowable design values include modification factors per NDS 2012)

(1110 Habita debigni randeb mendeb modification factors per i

Deflection analysis:

For total load: Allowed deflection criteria, span/ 360
For LL only: Allowed deflection criteria, span/ 480

 Max. allowed total defl:
 0.533
 in
 Max LL defl:
 0.400
 in

 Total defl. * I:
 524.3
 Required I:
 983
 in^4

 LL defl. * I:
 426.0
 Required I:
 1,065
 in^4

Actual deflections: TOTAL: 0.465 inches LL: 0.378 inches

Force analysis: Max Shear: 5120 lbs

Max. moment: 20480 ft-lb Shear @ d = 4400 lbs

Selected Member: GLB 5.500 x 13.5

Member properties:	Provided:		Required:
Moment of inertia:	1,127.7 in^4		1,065.0 in^4
Section Modulus:	167.1 in^3		102.4 in^3
Section Area:	74.3 in^2		24.9 in^2
Bearing Area:			7.9 in^2
Minimum bearing dimensions:	5.5	X	1.4 inches

John S. Apolis, P.E. CSES, Inc. Job number: 2019.089 Project: 4270 Ardekani Date: 19-Dec-19 Architect: Page number: M18 Post Design (Combined Axial and Moment Loading) 2015 INT. Building Code (IBC) 2015 NDS Beam Description: Deck Header Posts Enter '1' for wind load: 1 Enter '1' for repetitive member: Enter '1' for wet use: Geometry and loads: Height 8 ft w(d)100.0 plf 15000 lbs w(b) 0 plf Le(d) 8 ft Le(b) 8 ft Material Properties: Fb1 850 psi Fb(d)' 977.5 psi Fb2 850 psi Fb(b)' 977.5 psi Fc 1300 psi Fc' 944 psi E 1.3 x10^6psi E' 1.3 x10^6psi 0.47 x10^6psi Emin Emin' 0.47 x10^6psi Selected Member: HF#2 5.5 5.5 X Member properties: Variables: Section Modulus (d): 27.7 in^3 Rb(d) 4.18 Section Modulus (b): 27.7 in^3 Rb(b) 4.18 Section Area: 30.3 in^2 0.8

Required

FcE(d)	1268 psi	>	fc	496 psi
FcE(b)	1268 psi	>	fc	496 psi
FbE	32313 psi	>	fb(d)	346 psi
FbE	32313 psi	>	fb(b)	0 psi
Bending and Axial Compres NDS 2010 EQ 3.9-3	sion Check:	0.86	<	1.0

Member stresses: Provided

Load Factors

Dead Load

Live Load

Earth, H

Wind, W

Seismic, E

Building Code

IBC 2018,ACI

1.200

1.600

1.600

1.000

1.000

Project Name/Number: 4270

Title **F2** : Dsgnr: Description....

Page : 1 Date: 20 FEB 2020

ainPro (c) 1987-2019, Build ense : KW-06061297	11.19.11.12	Cantilevere	d Retaining W	all	Code: IBC 2018,AC	X 318-14,TMS 402-
ense To : CSES, Inc Criteria	8	Soil Data				
Retained Height = Vall height above soil = Slope Behind Wall =	0.50 ft	Allow Soil Bearing Equivalent Fluid Pre Active Heel Pressure		psf psf/ft		
Height of Soil over Toe = Vater height over heel =		Passive Pressure Soil Density, Heel Soil Density, Toe Footing Soil Friction Soil height to ignore for passive pressure		pcf pcf		:
Surcharge Loads	1	Lateral Load A	pplied to Stem		Adjacent Footing I	_oad
Used To Resist Sliding &	= 100.0 urning	Lateral LoadHeight to TopHeight to Bottom Load Type	= 0.0 #/ = 0.00 ft = 0.00 ft = Wind (W) (Service Le	evel)	Adjacent Footing Load Footing Width Eccentricity Wall to Ftg CL Dist Footing Type Base Above/Below Soil	= 0.0 lbs = 0.00 ft = 0.00 in = 0.00 ft Line Load
Axial Dead Load :	= 480.0 lbs = 640.0 lbs	Wind on Exposed (Service Level)	Stem = 0.0 ps	sf	at Back of Wall Poisson's Ratio	= 0.0 ft = 0.300
Earth Pressure Sei	smic Load					
(Multiplier used on soil de	= 8.000 ensity)	Uniform Seismic Force Total Seismic Force Stem Constr	e = 968.000	Bottom		
Design Summary		No. 10 (20) A 2 (20) March 42	ht Above Ftg ft =	Stem OK 0.00		
Wall Stability Ratios Overturning Slab Resis	= 1.29 Ratio ts All Sliding !	Wall Mater	ial Above "Ht" = thod =	Concrete LRFD 8.00 # 5	9	
Total Bearing Load resultant ecc.	= 5,389 lbs = 11.09 in	Rebar Spa Rebar Plac	ed at =	5.00 Edge		
Soil Pressure @ Toe Soil Pressure @ Heel Allowable	= 1,696 psf C = 0 psf C = 2,000 psf	ID/I D · Id/	Fa = :e @ Section		7	
Soil Pressure Less ACI Factored @ Toe ACI Factored @ Heel	Than Allowable = 2,374 psf = 0 psf	Strength Moment Service	Level lbs = .Actual	4,880.0)	
Footing Shear @ Toe Footing Shear @ Heel Allowable	= 37.1 psi 0 = 22.6 psi 0 = 75.0 psi	OK Strengt Moment	h Level ft-# =	17,733.		
Sliding Calcs Lateral Sliding Force	= 3,702.6 lbs	ShearA Service Strengt ShearA Anet (Mas	Level psi = th Level psi = Allowable psi =	65. 75.		
		Rebar Dep Masonry De fm	oth 'd' in = ata psi =	e 6.1	9	
/ertical component of actionsidered in the calculation	ve lateral soil pressure	Fs Solid Ground Sures. Modular F		=		

Short Term Factor

Equiv. Solid Thick.

Concrete Data

fc

Fy

Masonry Block Type

Masonry Design Method

= Medium Weight

2,500.0

ASD

psi = 60,000.0

psi=

Title F2 : Dsgnr:

Description....

Date: 20 FEB 2020

Page: 2

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12

License: KW-06061297 License To: CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018, ACI 318-14, TMS 402-16

Concrete Stem Rebar Area Details

Vertical Reinforcing

0.6715 in2/ft

Min Stem T&S Reinf Area 2.016 in2

Horizontal Reinforcing

0.8953 in2/ft (4/3) * As: 0.2475 in2/ft 200bd/fy: 200(12)(6.1875)/60000:

Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft

0.0018bh: 0.0018(12)(8):

As (based on applied moment):

0.1728 in2/ft ======== Horizontal Reinforcing Options: One layer of: Two layers of:

Required Area: Provided Area: Maximum Area: 0.6715 in2/ft 0.744 in2/ft 0.8382 in2/ft

#4@ 12.50 in #4@ 25.00 in #5@ 19.38 in #5@ 38.75 in #6@ 55.00 in #6@ 27.50 in

Footing Data

rooting D	ala			
Toe Width	· (1000年度) 自由《中央》	=	4.	00 ft
Heel Width		=	1.	17
Total Footing	Width	=	5.	17
Footing Thick	ness	=	12.	00 in
Key Width		=	0.	00 in
Key Depth		=	0.	00 in
Key Distance	from Toe	=	0.	00 ft
fc = 2	500 psi	Fy =		00 psi
Footing Cond	rete Densit	y =	150.	00 pcf
Min. As %		=	0.00	18
Cover @ Top	2.00	@	Btm.=	3.00 ir

Footing Design Results

STORY OF THE PROPERTY OF THE P	No. of		
		Toe	Heel
Factored Pressure	=	2,374	0 psf
Mu': Upward	=	166,873	0 ft-#
Mu': Downward	=	39,840	1,146 ft-#
Mu: Design	=	5,828	1,146 ft-#
Actual 1-Way Shear	=	37.09	22.59 psi
Allow 1-Way Shear	=	75.00	40.00 psi
Toe Reinforcing	=	# 5 @ 4.50 in	
Heel Reinforcing	=	None Spec'd	
Key Reinforcing	=	None Spec'd	
Footing Torsion, Tu		=	0.00 ft-lbs
Footing Allow. Torsio	n, p	ohi Tu =	0.00 ft-lbs
		0.00	

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 7.05 in, #5@ 10.93 in, #6@ 15.52 in, #7@ 21.17 in, #8@ 27.87 in, #9@ 35

Heel: Not req'd: Mu < phi*5*lambda*sqrt(fc)*Sm

Key: No key defined

Min footing T&S reinf Area Min footing T&S reinf Area per foot

1.34 in2 in2 /ft 0.26

If one layer of horizontal bars:

If two layers of horizontal bars:

#4@ 18.52 in #4@ 9.26 in #5@ 14.35 in #5@ 28.70 in #6@ 40.74 in #6@ 20.37 in

resistance, but is included for soil pressure calculation.

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title **F2** : Dsgnr: Description....

Page: 3 Date: 20 FEB 2020

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12 License: KW-06061297 License To: CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018,ACI 318-14,TMS 402-16

	OV	ERTURNING)			RESISTING			
Item		Force lbs	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
HL Act Pres (ab water tbl HL Act Pres (be water tbl Hydrostatic Force		3,025.0	3.67	11,091.7	Soil Over HL (ab. water Soil Over HL (bel. water Watre Table		625.4	4.92 4.92	3,075.1 3,075.1
Buoyant Force	=				Sloped Soil Over Heel	=			
Surcharge over Heel	=				Surcharge Over Heel Adjacent Footing Load	=			
Surcharge Over Toe Adjacent Footing Load	=				Avial Dead I had on Ster	m =	1,120.0	4.33	2,080.0
Added Lateral Load	=				* Axial Live Load on Stem	=	640.0	4.33	2,773.3
Load @ Stem Above Soi	=				Soil Over Toe	=	250.0	2.00	500.0
Seismic Earth Load	=	677.6	5.50	3,726.8	Surcharge Over Toe	=	400.0	2.00	800.0
Colomio Eurin Edua	=	011.0	0.00	5,. 25.5	Stem Weight(s)	=	1,050.0	4.33	4,550.0
					Earth @ Stem Transition	ıs=			
Total	=	3,702.6	O.T.M. =	14,818.5	Footing Weight	=	775.1	2.58	2,002.3
					Key Weight	=			
Resisting/Overturning	g Rati	io	=	1.29	Vert. Component	=	1,168.9	5.17	6,039.7
Vertical Loads used for	or Soi	Pressure	= 5,389	4 lbs	Total	al =	4.749.4 lb	S D.M	10,047.1

If seismic is included, the OTM and sliding ratios may be 1.1 per section 1807.2.3 of IBC.

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only) 0.096 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.

Seismic, E

1.000

Fy

Title F2 : Dsgnr: Description....

Page: 1 Date: 19 DEC 2019

RetainPro (c) 1987-2019, Build License : KW-06061297 License To : CSES, Inc	11.19.11.12	Cant	ilevered Reta	ainiı	ng V	Nall	Cod	le: IBC 2018,A	CI 318	3-14,TMS 4	02-1
Criteria		Soil Da	ta								83
Wall height above soil Slope Behind Wall	= 10.00 ft = 0.50 ft = 0.00 = 6.00 in = 0.0 ft	Passive P Soil Densi Soil Densi	t Fluid Pressure Mel Pressure ressure ty, Heel ty, Toe	lethod = = = = = 1 = 1	50.0	D psf/ft D psf/ft D pcf D pcf					
		Soil height	t to ignore	= 1	12.00	in					
Surcharge Loads		Lateral	Load Applied	to S	Stem	1	Adjac	ent Footing	Load		
Used To Resist Sliding Surcharge Over Toe Used for Sliding & Over	= 100.0 turning	Lateral Lo Height t Height t	o Top = o Bottom =	0	0.0 # 0.00 ft 0.00 ft	t	Footing Eccentr Wall to	icity Ftg CL Dist	= =	0.0 lbs 0.00 ft 0.00 in 0.00 ft	
Axial Load Applied				0.5	rice L		Footing Base Al	i ype oove/Below Soil	=	Line Load 0.0 ft	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	= 200.0 lbs = 400.0 lbs = 0.0 in	(Service	Exposed Stem = Level)		0.0 p	ost		ck of Wall 's Ratio	=	0.300	
Earth Pressure Se	ismic Load										
Method : Uniform Multiplier Used (Multiplier used on soil de	= 8.000 ensity)		eismic Force = emic Force =	88. 968.	000						
Design Summary		Stem	Construction			Bottom Stem C					
Wall Stability Ratios Overturning Slab Resist Total Bearing Load	= 1.19 Ratio ts All Sliding! = 4.972 lbs	< 1.5! De Th Re	ign Height Above all Material Above esign Method lickness ebar Size ebar Spacing		ft = = = = =	Concre LRF	te D 00 5				
resultant ecc.	= 17.06 in	Re	ebar Placed at		=	Edg					
Soil Pressure @ Toe Soil Pressure @ Heel Allowable Soil Pressure Less ACI Factored @ Toe	= 1,970 psf C = 0 psf C = 2,000 psf 5 Than Allowable = 2,759 psf	K fb	ign Data /FB + fa/Fa otal Force @ Sect Service Level Strength Level		= lbs = lbs =	0.9 5,200					
ACI Factored @ Heel Footing Shear @ Toe	= 0 psf = 36.6 psi 0		omentActual Service Level	í	ft-#=						
Footing Shear @ Heel	= 22.9 psi O	K	Strength Level		ft-# = =	700-0889-08-087					
Allowable Sliding Calcs Lateral Sliding Force	= 75.0 psi = 3,922.6 lbs		nearActual Service Level		psi=						
		Sh	Strength Level nearAllowable		psi = psi =						
		Re	net (Masonry) ebar Depth 'd' sonry Data	0	in2 = in =		19			,	
ertical component of active onsidered in the calculation		fn Fs IS So sures. Mo	1		psi = psi = = = psf =		0				
Load Factors Building Code Dead Load Live Load	IBC 2018,ACI 1.200 1.600	Sh Ed Ma	nort Term Factor quiv. Solid Thick. asonry Block Type asonry Design Met	•	= =						
Earth, H Wind, W Seismic, E	1.600 1.000 1.000		crete Data	j	psi =	2,500					

psi = 60,000.0

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Project Name/Number: 4270

Title F2 Dsgnr:

Description....

Page: 2

Date: 19 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12

License: KW-06061297 License To: CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018, ACI 318-14, TMS 402-16

Concrete Stem Rebar Area Details

Bottom Stem Vertical Reinforcing As (based on applied moment): 0.7321 in2/ft

(4/3) * As: 0.9761 in2/ft

200bd/fy: 200(12)(6.1875)/60000: 0.2475 in2/ft 0.0018bh: 0.0018(12)(8): 0.1728 in2/ft

_____ Required Area: 0.7321 in2/ft

Provided Area: 0.8267 in2/ft Maximum Area: 0.8382 in2/ft

Horizontal	Reinforcina

Min Stem T&S Reinf Area 2.016 in2

Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft

1

#6@ 55.00 in

Horizontal Reinforcing Options: One layer of : Two layers of: #4@ 12.50 in #4@ 25.00 in #5@ 19.38 in #5@ 38.75 in

Footing Data

	CV 174/07		DE 2000	
Toe Width		=	4	.25 ft
Heel Width		=	1	.17
Total Footing	Width	=	5	.42
Footing Thick	ness	=	12.	00 in
Key Width		=	0	.00 in
Key Depth		=	0	.00 in
Key Distance	from Toe	=	0	.00 ft
fc = 2,5	500 psi	Fy =	60,0	00 psi
Footing Concr	ete Density	<i>i</i> =	150	.00 pcf
Min. As %		=	0.00	18
Cover @ Top	2.00	@ E	8tm.=	3.00 ir

Footing Design Results

		Toe	Heel
Factored Pressure	=	2,759	0 psf
Mu' : Upward	=	189,342	0 ft-#
Mu' : Downward	=	44,976	1,156 ft-#
Mu: Design	=	5,130	1,156 ft-#
Actual 1-Way Shear	=	36.57	22.92 psi
Allow 1-Way Shear	=	75.00	40.00 psi
Toe Reinforcing	=	# 5 @ 4.50 in	
Heel Reinforcing	=		
Key Reinforcing	=	None Spec'd	
Footing Torsion, Tu		<u>=</u>	0.00 ft-lbs
Footing Allow, Torsion	n, p	ohi Tu =	0.00 ft-lbs

#6@ 27.50 in

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 7.05 in, #5@ 10.93 in, #6@ 15.52 in, #7@ 21.17 in, #8@ 27.87 in, #9@ 35

Heel: Not reg'd: Mu < phi*5*lambda*sgrt(f'c)*Sm

Key: No key defined

Min footing T&S reinf Area 1.40 in2 Min footing T&S reinf Area per foot 0.26 in2 /ft

If one layer of horizontal bars: If two layers of horizontal bars:

#4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in

F2 : Title Dsgnr: Description....

Date: 19 DEC 2019

Page: 3

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12 License: KW-06061297 License To: CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018, ACI 318-14, TMS 402-16

Summary of Overturning & Resisting Forces & Moments

			ERTURNING				RES	STING	
Item		Force ibs	Distance ft	Moment ft-#	:		Force lbs	Distance ft	Moment ft-#
HL Act Pres (ab water th	ol)	3,025.0	3.67	11,091.7	Soil Over HL (ab. water	tbl)	625.4	5.17	3,231.4
HL Act Pres (be water the Hydrostatic Force	ol)	100-100-100-100-100-100-100-100-100-100			Soil Over HL (bel. water Watre Table	tbl)		5.17	3,231.4
Buoyant Force	=				Sloped Soil Over Heel	=			
Surcharge over Heel	=	220.0	5.50	1,210.0	Surcharge Over Heel	=	25.0	5.17	129.3
Surcharge Over Toe	=			.,	Adjacent Footing Load	=			
Adjacent Footing Load	=				Axial Dead Load on Sten	n =	600.0	4.58	916.7
Added Lateral Load	=				* Axial Live Load on Stem	=	400.0	4.58	1,833.3
oad @ Stem Above So	oil =				Soil Over Toe	=	265.6	2.13	564.5
Seismic Earth Load	=	677.6	5.50	3.726.8	Surcharge Over Toe	=	425.0	2.13	903.1
	=			100 to \$100 to 100 to 1	Stem Weight(s)	=	1,050.0	4.58	4,812.5
T-4-1		2 000 0	0.711	40 000 5	Earth @ Stem Transition	s =			
Total	=	3,922.6	O.T.M. =	16,028.5	Footing Weight	=	812.6	2.71	2,200.8
Att all a loss to be				727 SW 127	Key Weight	=			
Resisting/Overturning				1.19 > /./	Vert. Component	=	1,168.9	5.42	6,331.9
Vertical Loads used	tor So	Il Pressure	= 4,972.5	b lbs	Tota	al =	4.572.5 lbs	R.M.=	19.090.1

If seismic is included, the OTM and sliding ratios may be 1.1 per section 1807.2.3 of IBC.

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only) 0.106 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe.

because the wall would then tend to rotate into the retained soil.

Title F2 : Dsgnr: Description....

Page: 1 Date: 19 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

etainPro (c) 1987-2019, Build 11.19.11.12 icense : KW-06061297 icense To : CSES, Inc			Cantilevered R	Cantilevered Retaining Wall				Code: IBC 2018,ACI 318-14,TMS 402-			
Criteria	-0		Soil Data								
Retained Height Wall height above soil Slope Behind Wall	=	10.00 ft 0.50 ft 0.00	Allow Soil Bearing Equivalent Fluid Pressur Active Heel Pressure	= e Met =	2,000.0 psf thod 50.0 psf/ft						
Height of Soil over Toe Water height over heel	=	6.00 in 0.0 ft	Passive Pressure Soil Density, Heel Soil Density, Toe Footing Soil Friction Soil height to ignore for passive pressure	= = =	350.0 psf/ft 125.00 pcf 125.00 pcf 0.400 12.00 in						
Surcharge Loads			Lateral Load Appl	ed t	o Stem	Adjacent Footing	Load				
Surcharge Over Heel Used To Resist Sliding Surcharge Over Toe Used for Sliding & Ove	=	100.0	Lateral Load Height to Top Height to Bottom	= = =	0.0 #/ft 0.00 ft 0.00 ft	Adjacent Footing Load Footing Width Eccentricity Wall to Ftg CL Dist	= = =	0.0 lbs 0.00 ft 0.00 in 0.00 ft			
Axial Load Applied	d to	Stem	Load Type		/ind (W) Service Level)	Footing Type		Line Load			
Axial Dead Load Axial Live Load Axial Load Eccentricity	= = =	600.0 lbs 1,000.0 lbs 0.0 in	Wind on Exposed Stem (Service Level)		0.0 psf	Base Above/Below Soil at Back of Wall Poisson's Ratio	=	0.0 ft 0.300			
Earth Pressure Se	eism	ic Load	1								

Method: Uniform Multiplier Used 8.000 (Multiplier used on soil density)

Uniform Seismic Force = 88.000 Total Seismic Force 968.000

Masonry Design Method

Concrete Data fc

Fy

= ASD

psi = 60,000.0

2,500.0

D	es	ign	Su	mr	nai	У
200						

Wall Stability Ratios

=	1.24 Ratio < 1.5!
s All S	Sliding!
=	5,791 lbs 9.71 in
=	1,868 psf OK 12 psf OK
= Than	2,000 psf Allowable
=	2,615 psf 17 psf
=	40.9 psi OK
=	22.6 psi OK 75.0 psi
=	3,702.6 lbs
	= = = = Than = = = =

Vertical component of active lateral soil pressure IS ures.

Load Factors	
Building Code	IBC 2018,ACI
Dead Load	1,200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Stem Construction Bottom Stem OK 0.00 Design Height Above Ftg ft = Wall Material Above "Ht" Concrete Design Method = LRFD Thickness = 8.00 Rebar Size = # 5 Rebar Spacing = 5.00 Rebar Placed at = Edge Design Data fb/FB + fa/Fa 0.997 Total Force @ Section Service Level lbs = Strength Level lbs = 4,880.0 Moment....Actual ft-#= Service Level Strength Level ft-# = 17,733.3 Moment.....Allowable 17,776.5 Shear Actual Service Level psi = Strength Level psi = 65.7 Shear.....Allowable 75.0 psi = Anet (Masonry) in2 = Rebar Depth 'd' 6.19 in = Masonry Data fm psi = Fs psi = Solid Grouting = Modular Ratio 'n' = Wall Weight psf = 100.0 Short Term Factor Equiv. Solid Thick. Masonry Block Type = Medium Weight

Title F2 Dsgnr: Description....

Page: 2 Date: 19 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12 License: KW-06061297 License To: CSES, Inc

to set these five lines of information

for your program.

Cantilevered Retaining Wall

Code: IBC 2018,ACI 318-14,TMS 402-16

Concrete Stem Rebar Area Details

Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment): 0.6715 in2/ft

(4/3) * As: 0.8953 in 2/ft Min Stem T&S Reinf Area 2.016 in2

200bd/fy: 200(12)(6.1875)/60000: Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft 0.2475 in2/ft

0.0018bh: 0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: ======== One layer of : Two layers of: Required Area: 0.6715 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.744 in2/ft #5@ 19.38 in

#5@ 38.75 in Maximum Area: 0.8382 in2/ft #6@ 27.50 in #6@ 55.00 in

Footing Data

	-			
Toe Width		=	3.75	5 ft
Heel Width		=	1.17	7
Total Footing V	/idth	=	4.92	2
Footing Thickne	ess	=	12.00	in in
Key Width		=	0.00) in
Key Depth		=	0.00) in
Key Distance fr	om Toe	=	0.00) ft
		Fy =	60,000	psi
Footing Concret	te Density	=	150.00	pcf
Min. As %		=	0.0018	,
Cover @ Top	2.00	@ E	3tm.= 3.	.00 in

Footing Design Results

	3/2		- CO
		Toe	Heel
Factored Pressure	=	2,615	17 psf
Mu': Upward	=	164,935	0 ft-#
Mu': Downward	=	35,016	1,146 ft-#
Mu: Design	=	6,336	1,146 ft-#
Actual 1-Way Shear	=	40.90	22.59 psi
Allow 1-Way Shear	=	75.00	40.00 psi
Toe Reinforcing	=	#5@5.00 in	The Charles of Manager
Heel Reinforcing	=	None Spec'd	
Key Reinforcing	=	None Spec'd	
Footing Torsion, Tu		=	0.00 ft-lbs
Footing Allow. Torsion	n, p	hiTu =	0.00 ft-lbs

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 7.05 in, #5@ 10.93 in, #6@ 15.52 in, #7@ 21.17 in, #8@ 27.87 in, #9@ 35

Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm

Key: No key defined

Min footing T&S reinf Area 1.27 in2 Min footing T&S reinf Area per foot in2 /ft 0.26

If one layer of horizontal bars: If two layers of horizontal bars:

#4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in

Axial Dead Load on Stem =

* Axial Live Load on Stem =

Soil Over Toe

Title F2 Dsgnr: Description....

Date: 19 DEC 2019

Page:

2,450.0

4,083.3

439.5

703.1

4,287.5

1,813.3

5 747 4

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12 License : KW-06061297 License To : CSES, Inc

Adjacent Footing Load

Load @ Stem Above Soil =

Added Lateral Load

Cantilevered Retaining Wall

Code: IBC 2018, ACI 318-14, TMS 402-16

4.08

4.08

1.88

1.88

4.08

2 46

4.92

			ERTURNING			RI	SISTING	
Item		Force	Distance ft	Moment ft-#		Force lbs	Distance ft	Moment ft-#
HL Act Pres (ab water t	bl)	3,025.0	3.67	11,091.7	Soil Over HL (ab. water tbl)	625.4	4.67	2,918.7
HL Act Pres (be water the	bl)			NO MORE A SEC	Soil Over HL (bel. water tbl)		4.67	2,918.7
Hydrostatic Force					Watre Table			
Buoyant Force	=				Sloped Soil Over Heel =			
Surcharge over Heel	=				Surcharge Over Heel =			
Surcharge Over Toe	=				Adjacent Footing Load =			

Surcharge Over Toe Seismic Earth Load = 677.6 5.50 3,726.8 Stem Weight(s) Earth @ Stem Transitions = 3,702.6 O.T.M. = Total 14,818.5 Footing Weight Key Weight Resisting/Overturning Ratio 1.24 > 1.1 Vert. Component

Summary of Overturning & Resisting Forces & Moments

If seismic is included, the OTM and sliding ratios may be 1.1 per section 1807.2.3 of IBC.

Vertical Loads used for Soil Pressure =

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

	Total =	4.791.2	lbs	R.M.=	18,359.5
* Axial live load NOT	included in	total displa	yed,	or used	for overturning
resistance, but is in	cluaea for s	son pressure	cal	culation.	

1,600.0

1,000.0

234.4

375.0

1,050.0

737.6

1.168.9

=

=

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only) 0.111 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe.

5,791.2 lbs

because the wall would then tend to rotate into the retained soil.

Title F3 Dsgnr: Description....

Page: 1 Date: 19 DEC 2019

etainPro (c) 1987-2019, Bu icense : KW-06061297 icense To : CSES, Inc	nu 11.18.11.12	Cantilevered Retai	ning	Wall	Code: IBC 2018,A	CI 318-14,TMS 40
Criteria		Soil Data				
Retained Height Wall height above soil Slope Behind Wall Height of Soil over Toe Water height over heel	= 8.00 ft = 2.50 ft = 0.00 = 6.00 in = 0.0 ft	Allow Soil Bearing = Equivalent Fluid Pressure Met Active Heel Pressure = Passive Pressure = Soil Density, Heel = Soil Density, Toe = Footing Soil Friction = Soil height to ignore for passive pressure =	350 125.1 125.0	0.0 psf 0.0 psf/ft 0.0 psf/ft 00 pcf 00 pcf 00 pcf		
Surcharge Loads				ST 070.		
Surcharge Over Heel Used To Resist Sliding Surcharge Over Toe Used for Sliding & Over Axial Load Applied Axial Dead Load	= 100.0 rturning	(S	0.0 1.00 0.00 arth (H) ervice	#/ft ft ft) Level)	Adjacent Footing Load Footing Width Eccentricity Wall to Ftg CL Dist Footing Type Base Above/Below Soil	= 0.0 lbs = 0.00 ft = 0.00 in = 0.00 ft Line Load
Axial Live Load Axial Load Eccentricity	= 0.0 lbs = 0.0 in	Wind on Exposed Stem = (Service Level)	0.0	psf	at Back of Wall Poisson's Ratio	= 0.0 ft = 0.300
Method : Uniform Multiplier Used (Multiplier used on soil d	= 8.000		72.000 48.000			
Design Summary		Stem Construction		Bottom		
Wall Stability Ratios Overturning Slab Resis	= 1.31 Ratio <	Design Height Above F Wall Material Above "H Design Method Thickness Rebar Size		Concrete LRFD 8.00		
Total Bearing Loadresultant ecc.	= 3,652 lbs = 15.45 in	Rebar Spacing Rebar Placed at	=	8.00		
Soil Pressure @ Toe Soil Pressure @ Heel Allowable Soil Pressure Less	= 1,829 psf Ok = 0 psf Ok = 2,000 psf 3 Than Allowable		= lbs=		B	
ACI Factored @ Toe ACI Factored @ Heel Footing Shear @ Toe	= 2,561 psf = 0 psf = 26.9 psi OK	Strongth aval	lbs =	:		
Footing Shear @ Heel Allowable Iliding Calcs	= 16.9 psi OK = 75.0 psi	MomentAllowable ShearActual	ft-# = =	11,799.2		
Lateral Sliding Force	= 2,838.6 lbs	Service Level Strength Level ShearAllowable Anet (Masonry)	psi = psi = psi =	49.1 75.0		
		Rebar Depth 'd' Masonry Data fm	in2 = in = psi =	6.19		
tical component of active sidered in the calculation	e lateral soil pressure IS n of soil bearing pressur	Fs Solid Grouting res. Modular Ratio 'n' Wall Weight	psi = = = psf =			
oad Factors Building Code Dead Load Live Load	IBC 2018,ACI 1.200 1.600	Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Method	=	1800 1000 10	eight	

Concrete Data

Fy

psi = 2,500.0

psi = 60,000.0

1.600

1.000

1.000

Earth, H

Wind, W

Seismic, E

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title F3 : Dsgnr: Description.... Page: 2 Date: 19 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12 License : KW-06061297 License To : CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018,ACI 318-14,TMS 402-16

Concrete Stem Rebar Area Details

Bottom Stem Vertical Reinforcing Horizontal Reinforcing
As (based on applied moment): 0.4233 in2/ft

(4/3) * As : 0.5644 in2/ft Min Stem T&S Reinf Area 2.016 in2 200bd/fy : 200(12)(6.1875)/60000 : 0.2475 in2/ft Min Stem T&S Reinf Area per ft of s

 200bd/fy: 200(12)(6.1875)/60000:
 0.2475 in2/ft
 Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft

 0.0018bh: 0.0018(12)(8):
 0.1728 in2/ft
 Horizontal Reinforcing Options:

Footing Data

-				
Toe Width	-	=	3	.50 ft
Heel Width		=	1	.17
Total Footing V	/idth	=	4	.67
Footing Thickne	ess	=	12	.00 in
Key Width		=	0	.00 in
Key Depth		=	0	.00 in
Key Distance fr	om Toe	=	0	.00 ft
fc = 2,50 Footing Concret	0 psi	Fy_=	60,0	00 psi .00 pcf
Min. As %	e Density	_		100 mg - 100
	0.00		0.00	
Cover @ Top	2.00	@ E	3tm.=	3.00 in

Footing Design Results

		Toe	Heel
Factored Pressure	=	2,561	0 psf
Mu': Upward	=	118,300	0 ft-#
Mu': Downward	=	30,503	819 ft-#
Mu: Design	=	2,730	819 ft-#
Actual 1-Way Shear	=	26.86	16.85 psi
Allow 1-Way Shear	=	75.00	40.00 psi
Toe Reinforcing	=	# 5 @ 6.00 in	and the same of th
Heel Reinforcing		None Spec'd	
Key Reinforcing		None Spec'd	
Footing Torsion, Tu		=	0.00 ft-lbs
Footing Allow. Torsio	n, p	hi Tu =	0.00 ft-lbs

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 9.05 in, #5@ 14.03 in, #6@ 19.92 in, #7@ 27.16 in, #8@ 35.77 in, #9@ 45

Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm

Key: No key defined

Min footing T&S reinf Area 1.21 in2
Min footing T&S reinf Area per foot 0.26 in2 /ft

If one layer of horizontal bars: If two layers of horizontal bars:

#4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in Title F3 Dsgnr: Description....

Date: 19 DEC 2019

Page: 3

F12

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12 License: KW-06061297 License To: CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018,ACI 318-14,TMS 402-16

		ForceOV	ERTURNING			RE	RESISTING		
Item		lbs	Distance ft	Moment ft-#		Force lbs	Distance ft	Moment ft-#	
HL Act Pres (ab water th		2,025.0	3.00	6,075.0	Soil Over HL (ab. water th	1) 500.3	4.42	2,209.9	
HL Act Pres (be water the	1)			institut white	Soil Over HL (bel. water the		4.42	2,209.9	
Hydrostatic Force					Watre Table	173		_,	
Buoyant Force	=				Sloped Soil Over Heel				
Surcharge over Heel	=	360.0	4.50	1.620.0	0 1 0 11	= 50.0	4.42	221.0	
Surcharge Over Toe	=			1,020.0	A 100 - 100	=		221.0	
Adjacent Footing Load	=				Axial Dead Load on Stem =	•			
Added Lateral Load	=				* Axial Live Load on Stem =				
oad @ Stem Above So	il =				0-110	218.8	1.75	382.8	
Seismic Earth Load	=	453.6	4.50	2,041.2	Surcharge Over Toe =	= 0.007(0)	1.75	612.5	
	=				Stem Weight(s)	paging and a supplementary	3.83	4,025.0	
Total	=	2,838.6	OTM	0.700.0	Earth @ Stem Transitions =			.,,,,,,,,,	
Total	.=:	2,030.0	O.T.M. =	9,736.2	Footing Weight =	700.1	2.33	1,633.6	
Resisting/Overturning	~ Dati	_			Key Weight =			2.9/10/20/20/20	
Vertical Loads used f	or Soil	U Praceura =	= = 3,651.6	1.31	Vert. Component =	782.5	4.67	3,651.8	
, 5.1.52. 20003 0300 1	01 001	i i icasule -	3,001.0	105	* Axial live load NOT include	= 3,651.6 lbs	s R.M.=	12,736.6	

If seismic is included, the OTM and sliding ratios may be 1.1 per section 1807.2.3 of IBC.

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus

250.0 pci

Horizontal Defl @ Top of Wall (approximate only)

0.114 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe.

because the wall would then tend to rotate into the retained soil.

Title **F5** : Dsgnr: Description....

Page : 1 Date: 23 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Bui license : KW-06061297 License To : CSES, Inc				С	antilevered Ret	ain	ing	Wall	Co	de: IBC 2	2018,A	CI 31	8-14,TMS 402
Criteria		- 11-		Soil	Data							On the second	224-
Retained Height Wall height above soil Slope Behind Wall	=	12.00 ft 0.50 ft 0.00		Equiv	Soil Bearing alent Fluid Pressure N Heel Pressure	/letho	d	0.0 psf 0.0 psf/ft					
Height of Soil over Toe Water height over heel	=	18.00 in 0.0 ft		Soil D Soil D Footin Soil he	ve Pressure vensity, Heel ensity, Toe gg Soil Friction eight to ignore passive pressure	= = = = = =	125.0 125.0 0.35	0.0 psf/ft 0.0 pcf 0.0 pcf 5.0 0 in					
Surcharge Loads				Late	eral Load Applied	to	Ster	n 📗	Adia	cent Foo	tina	Load	
Surcharge Over Heel Used To Resist Sliding Surcharge Over Toe Used for Sliding & Over	= turnir	0.0		Heig	al Load = ght to Top = ght to Bottom = Type =	Eart	0.0 1.00 0.00 h (H)	ft ft	Adjace Footing Eccent Wall to	ent Footing g Width tricity Ftg CL Di	Load	= = = =	0.0 lbs 0.00 ft 0.00 in 0.00 ft
Axial Load Applied Axial Dead Load Axial Live Load Axial Load Eccentricity	=	0.0 lbs 0.0 lbs 0.0 in			on Exposed Stem = vice Level)	(Sei	0.0	Level) psf	at Ba	g Type Above/Belo ack of Wall n's Ratio		=	0.0 ft 0.300
Design Summary	Victoria de la composición dela composición de la composición dela composición de la			Ste	m Construction			Bottom					
Wall Stability Ratios Overturning Sliding	=	2.62 Ok 1.21 Rat			Design Height Above Wall Material Above Design Method Thickness Rebar Size	~	ft = = = = =	Concrete LRFD					
Total Bearing Loadresultant ecc.	=	11,305 lbs 1.89 in			Rebar Spacing Rebar Placed at		=	4.00					
Soil Pressure @ Toe Soil Pressure @ Heel Allowable Soil Pressure Less	= = = Thai	1,554 psf 1,185 psf 2,000 psf Allowable		ı	Design Data fb/FB + fa/Fa Total Force @ Sect Service Level	ion	= lbs =						
ACI Factored @ Toe ACI Factored @ Heel Footing Shear @ Toe	= =	2,176 psf 1,659 psf 10.2 psi	OK		Strength Level MomentActual Service Level		lbs =						
Footing Shear @ Heel Allowable Sliding Calcs	=	69.4 psi 75.0 psi			Strength Level MomentAllowable ShearActual	ı,	ft-# = =						
Lateral Sliding Force less 100% Passive Force less 100% Friction Force					Service Level Strength Level ShearAllowable		psi = psi = psi =						
Added Force Req'dfor 1.5 Stability	=	0.0 lbs 1,305.1 lbs		N	Anet (Masonry) Rebar Depth 'd' Masonry Data		in2 = in =						
rtical component of active sidered in the calculation	later	al soil pressur oil bearing pres	e IS ssure		fm Fs Solid Grouting Modular Ratio 'n' Wall Weight		psi = psi = = = psf =	125.0					
oad Factors Building Code Dead Load Live Load Earth, H	IB	C 2018,ACI 1.200 1.600 1.600			Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Meth Concrete Data		=	Medium W ASD	/eight				
Wind, W Seismic, E		1.000 1.000			fc Fy		psi = psi =	2,500.0 60,000.0					

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Project Name/Number: 4270

Min Stem T&S Reinf Area 3.000 in2

Title F5 Dsgnr: Description....

Date: 23 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12

License : KW-06061297 License To : CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018,ACI 318-14,TMS 402-16

Concrete Stem Rebar Area Details

Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment): 0.6507 in2/ft

(4/3) * As: 0.8676 in 2/ft

200bd/fy: 200(12)(8.1875)/60000: Min Stem T&S Reinf Area per ft of stem Height: 0.240 in2/ft 0.3275 in2/ft 0.0018bh: 0.0018(12)(10): 0.216 in2/ft

Horizontal Reinforcing Options: ========= One layer of : Two layers of: Required Area: 0.6507 in2/ft #4@ 10.00 in #4@ 20.00 in Provided Area: 0.93 in2/ft #5@ 15.50 in #5@ 31.00 in Maximum Area: 1,1092 in2/ft #6@ 22.00 in #6@ 44.00 in

Footing Data

Toe Width		=	2.00 ft
Heel Width		=	5.00
Total Footing	ng Width	=	7.00
Footing Thi	ckness	=	16.00 in
Key Width		=	0.00 in
Key Depth		=	0.00 in
Key Distant	ce from Toe	=	0.00 ft
	2,500 psi	Fy =	60,000 psi
Footing Cor	crete Densit	y =	150.00 pcf
Min. As %		=	0.0018
Cover @ To	p 2.00	@	3.00 ir

Footing Design Results

All and the second seco		Toe	Heel	
Factored Pressure	=	2,176	1,659	psf
Mu': Upward	=	51,041	0	ft-#
Mu': Downward	=	11,160	29,158	ft-#
Mu: Design	=	2,905	29,158	ft-#
Actual 1-Way Shear	=	10.23	69.43	psi
Allow 1-Way Shear	=	75.00	75.00	
Toe Reinforcing	=	#5@4.00 in		
Heel Reinforcing	=	# 5 @ 4.00 in		
Kev Reinforcina	=	#4@9.00 in		

Footing Torsion, Tu 36,616.50 ft-lbs Footing Allow. Torsion, phi Tu 8,640.00 ft-lbs

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 6.93 in, #5@ 10.75 in, #6@ 15.27 in, #7@ 20.82 in, #8@ 27.42 in, #9@ 34 Heel: #4@ 6.93 in, #5@ 10.75 in, #6@ 15.27 in, #7@ 20.82 in, #8@ 27.42 in, #9@ 34

Key: No key defined

Min footing T&S reinf Area 2.42 in2 Min footing T&S reinf Area per foot 0.35 in2 /ft

If one layer of horizontal bars: If two layers of horizontal bars:

#4@ 6.94 in #4@ 13.89 in #5@ 10.76 in #5@ 21.53 in #6@ 30.56 in #6@ 15.28 in

Title **F5**Dsgnr:
Description....

Page: 3 Date: 23 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

Use menu item Settings > Printing & Title Block

RetainPro (c) 1987-2019, Build 11.19.11.12 License: KW-06061297 License To: CSES, Inc

to set these five lines of information

for your program.

Cantilevered Retaining Wall

Code: IBC 2018,ACI 318-14,TMS 402-16

OVERTURNING Force Distance Moment						RE		
Item		lbs	ft	Moment ft-#		Force lbs	Distance ft	Moment ft-#
HL Act Pres (ab water tb	l)	4,444.4	4.44	19,753.1	Soil Over HL (ab. water tbl)	6,250.0	4.92	30,729.2
L Act Pres (be water to Hydrostatic Force	l)				Soil Over HL (bel. water tbl) Watre Table		4.92	30,729.2
Buoyant Force	=				Sloped Soil Over Hee =			
Surcharge over Heel	=				Surcharge Over Heel =			
Surcharge Over Toe	=				Adjacent Footing Load =			
Adjacent Footing Load	=				Axial Dead Load on Stem =			
Added Lateral Load	=				* Axial Live Load on Stem =			
oad @ Stem Above Soi	=				Soil Over Toe =	375.0	1.00	375.0
	=				Surcharge Over Toe =	20000	1.00	0,0.0
					Stem Weight(s) =	1,562.5	2.42	3,776.0
Total		4 444 4	0.711	10.750 /	Earth @ Stem Transitions =	V. 4 V. 5		0,1.0.0
iotai	=	4,444.4	O.T.M. =	19,753.1	Footing Weight =	1,400.0	3.50	4,900.0
D1-41					Key Weight =			1000000
Resisting/Overturning Vertical Loads used for	Kati	O Drossura	= = 11,304.9	2.62	Vert. Component =	1,717.4	7.00	12,021.6

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus

250.0 pci

Horizontal Defl @ Top of Wall (approximate only)

0.077 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe.

because the wall would then tend to rotate into the retained soil.

Description....

Dsgnr:

Page: 1

Date: 23 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

License : KV	7-0606129	7	iliu 11.15.	11.12
License To	: CSES,	Inc		
Critoria				

Cantilevered Retaining Wall

Code: IBC 2018,ACI 318-14,TMS 402-16

Criteria

Retained Height	=	6.00 ft
Wall height above soil	=	0.00 ft
Slope Behind Wall	=	0.00
Height of Soil over Toe	=	0.00 in
Water height over heel	=	0.0 ft

Soil Data

Allow Soil Bearing	=	2,000.0 psf
Equivalent Fluid Pressur	e Meth	nod
Active Heel Pressure	=	50.0 psf/ft
	=	
Passive Pressure	=	350.0 psf/ft
Soil Density, Heel	=	125.00 pcf
Soil Density, Toe	=	125.00 pcf
Footing Soil Friction	=	0.400
Soil height to ignore for passive pressure	=	12.00 in

Lateral Load Applied to Stem

ALL SANSHER SELECTION OF THE SELECTION O	-	A DATE OF THE PARTY OF THE PART
Lateral Load	=	0.0 #/ft
Height to Top	=	1.00 ft
Height to Bottom	=	0.00 ft
Load Type	=	Earth (H)
		(Service Level)
Wind on Exposed Ster (Service Level)	n _	0.0 psf

Adjacent Footing Load

		The second secon
Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Line Load
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

Surcharge Loads

	=	100.0 psf
Used To Resist Sliding	& (Overturning
Surcharge Over Toe	=	0.0
Used for Sliding & Over	rturr	ning

Axial Load Applied to Stem

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Earth Pressure Seismic Load

Method : Uniform		
Multiplier Used	=	8.000
(Multiplier used on so	il densi	ty)

Uniform Seismic Force = 56,000 Total Seismic Force = 392.000

Design Summary

			_		
Wall Stability Ratios Overturning Sliding	=		3 Ol 3 Rai	(tio < 1.	5!
Total Bearing Loadresultant ecc.	=	5,174 6.78			
Soil Pressure @ Toe Soil Pressure @ Heel Allowable Soil Pressure Less ACI Factored @ Toe ACI Factored @ Heel Footing Shear @ Toe	= =	2,000 Allowabl 2,434 386 0.0	psf psf e psf psf psi	OK OK	
Footing Shear @ Heel Allowable Sliding Calcs	=	50.2 75.0		OK	
Lateral Sliding Force less 100% Passive Force less 100% Friction Force		1,779.4 0.0 2,069.5	lbs		
Added Force Req'dfor 1.5 Stability	=	0.0 599.6	lbs lbs	12000	

Vertical component of active lateral soil pressure IS considered in the calculation of soil bearing pressures.

Load Factors Building Code	IBC 2018,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Stem Construction Bottom Stem OK

Doolan Height About Etc		Stem OK	
Design Height Above Ftg		0.00	
Wall Material Above "Ht"		Concrete	
Design Method	=	LRFD	
Thickness	=	8.00	
Rebar Size	=	# 4	
Rebar Spacing	=	9.00	
Rebar Placed at	=	Edge	
Design Data		2 288	
fb/FB + fa/Fa	=	0.707	
Total Force @ Section			
Service Level	lbs =		
Strength Level	lbs =	2,160.0	
MomentActual			
Service Level	ft-#=		
Strength Level	ft-# =	5,040.0	
MomentAllowable	=	7,122.4	
ShearActual			
Service Level	psi =		
Strength Level	psi=	28.8	
ShearAllowable	psi =	75.0	
Anet (Masonry)	in2 =		
Rebar Depth 'd'	in =	6.25	
Masonry Data			
Fm			

Masonry Data	
fm	psi =
Fs	psi =
Solid Grouting	=
Modular Ratio 'n'	=
14/-11 14/-1-14	

Fy

Wall Weight	psf=	100.0
Short Term Factor	=	
Equiv. Solid Thick.	=	
Masonry Block Type	=	Medium Weight
Masonry Design Method	=	ASD
Concrete Data		
fc	psi =	2,500.0

psi = 60,000.0

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title F4 Dsgnr: Description....

Page: 2 Date: 23 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12 License: KW-06061297 License To: CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018,ACI 318-14,TMS 402-16

Concrete Stem Rebar Area Details

Bottom Stem As (based on applied moment): Vertical Reinforcing

Horizontal Reinforcing

(4/3) * As:

0.1888 in 2/ft 0.2518 in2/ft

Min Stem T&S Reinf Area 1.152 in2

200bd/fy: 200(12)(6.25)/60000:

0.25 in2/ft

Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft

0.0018bh: 0.0018(12)(8):

0.1728 in2/ft

Horizontal Reinforcing Options:

Required Area: Provided Area: Maximum Area: ========= 0.25 in2/ft 0.2667 in2/ft 0.8467 in2/ft

One layer of : Two layers of: #4@ 12.50 in #4@ 25.00 in

#5@ 19.38 in #5@ 38.75 in #6@ 27.50 in #6@ 55.00 in

Footing Data

Toe Width		=	0	.00 ft
Heel Width		=	4	.67
Total Footing W	/idth	=	4	.67
Footing Thickne	ss	=	12	.00 in
Key Width		=	0	.00 in
Key Depth		=	0	.00 in
Key Distance fr	om Toe	=	0	.00 ft
fc = 2,50 Footing Concret	0 psi e Density	Fy =		000 psi .00 pcf
Min. As %		=	0.00	118
Cover @ Top	2.00	@ E	3tm.=	3.00 ir

Footing Design Results

		Toe	Heel
Factored Pressure	=	2,434	386 psf
Mu': Upward	=	0	0 ft-#
Mu': Downward	=	0	12,951 ft-#
Mu: Design	=	0	12,951 ft-#
Actual 1-Way Shear	=	0.00	50.16 psi
Allow 1-Way Shear	=	0.00	75.00 psi
Toe Reinforcing	=	# 4 @ 9.00 in	
Heel Painforcing	_	# 4 @ 0 00 in	

Heel Reinforcing = #4@9.00 in Key Reinforcing = None Spec'd

Footing Torsion, Tu -36,616.50 ft-lbs Footing Allow. Torsion, phi Tu = 8,640.00 ft-lbs

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: Not req'd: Mu < phi*5*lambda*sqrt(fc)*Sm

Heel: #4@ 9.25 in, #5@ 14.34 in, #6@ 20.36 in, #7@ 27.77 in, #8@ 36.56 in, #9@ 46

Key: No key defined

Min footing T&S reinf Area Min footing T&S reinf Area per foot 1.21 in2 0.26 in2 /ft

If one layer of horizontal bars:

If two layers of horizontal bars:

#4@ 9.26 in #5@ 14.35 in #6@ 20.37 in

#4@ 18.52 in #5@ 28.70 in #6@ 40.74 in

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title F4
Dsgnr:
Description....

Page: 3 Date: 23 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12 License: KW-06061297 License To: CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018,ACI 318-14,TMS 402-16

			ERTURNING			RESISTING		
Item		Force lbs	Distance ft	Moment ft-#		Force lbs	Distance ft	Moment ft-#
HL Act Pres (ab water t	bl)	1,225.0	2.33	2,858.3	Soil Over HL (ab. water tbl)	3,000.3	2.67	8,001.2
HL Act Pres (be water t Hydrostatic Force	bl)				Soil Over HL (bel. water tbl) Watre Table		2.67	8,001.2
Buoyant Force	=				Sloped Soil Over Hee =			
Surcharge over Heel	=	280.0	3.50	980.0	Surcharge Over Heel =	400.0	2.67	1,066.8
Surcharge Over Toe	=				Adjacent Footing Load =			
djacent Footing Load	=				Axial Dead Load on Stem =			
dded Lateral Load	=				* Axial Live Load on Stem =			
oad @ Stem Above So	= lic				Soil Over Toe =			
eismic Earth Load	=	274.4	3.50	960.4	Surcharge Over Toe =			
	=		N.P.Z.Wei		Stem Weight(s) =	600.0	0.33	200.0
Total	2857	1 770 4	0.7.14	4 700 7	Earth @ Stem Transitions =			
IOIAI	=	1,779.4	O.T.M. =	4,798.7	Footing Weight =	700.1	2.33	1,633.6
Design of the second of the se					Key Weight =			
Resisting/Overturnin Vertical Loads used				2.73	Vert. Component =	473.4	4.67	2,209.1
voition Loads used	101 30	ii riessule .	= 5,173.7	ibs	Total =	5 173 7 1	00 D M =	13 110

If seismic is included, the OTM and sliding ratios may be 1.1 per section 1807.2.3 of IBC.

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus

250.0 pci

Horizontal Defl @ Top of Wall (approximate only)

0.062 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe.

because the wall would then tend to rotate into the retained soil.

Title **F4** : Dsgnr: Description....

Page: 1 Date: 23 DEC 2019

RetainPro (c) 1987-2019, Buil License : KW-06061297	d 11.1	9.11.12		Cantilevered Reta	ining	1 c	Nall	Code: IRC 2019 A	Cl 2	18 14 TMC 400
icense To : CSES, Inc		and the same	-			9 1	r r u II	Code: IBC 2018,A	UI 3'	10-14, HVIS 402-
Criteria				Soil Data						
Retained Height Wall height above soil Slope Behind Wall Height of Soil over Toe Water height over heel	= = = = = = = = = = = = = = = = = = = =	9.00 ft 0.00 ft 0.00 6.00 in 0.0 ft		Allow Soil Bearing = Equivalent Fluid Pressure Me Active Heel Pressure = Passive Pressure = Soil Density, Heel =	35	0.0	0 psf/ft 0 psf/ft			
			ij	Soil Density, Toe = Footing Soil Friction = Soil height to ignore for passive pressure =	125 0.4	.00 400				
Surcharge Loads				Lateral Load Applied	to Ste	m)	Adjacent Footing	Load	
Used To Resist Sliding	=	100.0		Lateral Load =Height to Top =Height to Bottom = Load Type = E	1.00 0.00) ft		Adjacent Footing Load Footing Width Eccentricity Wall to Ftg CL Dist	= =	0.0 lbs 0.00 ft 0.00 in 0.00 ft
Axial Load Applied Axial Dead Load	to S	0.0 lbs		= 9	Earth (F Service 0.0	Le		Footing Type Base Above/Below Soil	=	Line Load 0.0 ft
Axial Live Load Axial Load Eccentricity	=	0.0 lbs 0.0 in	_	(Service Level)	0.0	, p.	51	at Back of Wall Poisson's Ratio	=	0.300
Design Summary				Stem Construction			Bottom Stem OK			
Wall Stability Ratios Overturning Slab Resist	= s All	1.57 C Sliding!	K	Design Height Above II Wall Material Above III Design Method Thickness		= =	0.00 Concrete LRFD 8.00			
Total Bearing Loadresultant ecc.	=	3,698 lbs 7.18 in	3	Rebar Size Rebar Spacing Rebar Placed at		= =	# 4 6.00			
Soil Pressure @ Toe Soil Pressure @ Heel	=	1,036 ps 135 ps	f OK	Design Data fb/FB + fa/Fa		=	0.934			
Allowable Soil Pressure Less ACI Factored @ Toe ACI Factored @ Heel	= Than =	2,000 ps Allowable 1,450 ps	f f	Total Force @ Section Service Level Strength Level MomentActual	lbs lbs		3,240.0			
Footing Shear @ Toe Footing Shear @ Heel	=	189 ps 17.3 ps 19.3 ps	OK	Service Level Strength Level	ft-# ft-#		9,720.0			
Allowable Sliding Calcs	=	75.0 psi		MomentAllowable ShearActual		=	10,400.4			
Lateral Sliding Force	=	2,500.0 lbs		Service Level Strength Level ShearAllowable	psi psi psi	=	43.2 75.0			•
				Anet (Masonry) Rebar Depth 'd' Masonry Data	in2 in		6.25			
utical account of the	No. of Control			fm Fs	psi:	=				
rtical component of active nsidered in the calculation	of so	al soil pressu oil bearing pre	ire IS essure	Solid Grouting s. Modular Ratio 'n' Wall Weight		=	100.0			
oad Factors Building Code Dead Load Live Load	IBO	2018,ACI 1.200 1.600		Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Metho	:	= = = 1	100.0 Medium W ASD	eight		
Earth, H Wind, W Seismic, E		1.600 1.000 1.000		Concrete Data fc Fy	psi =	-	2,500.0 60,000.0			_

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Project Name/Number: 4270

F4 Title Dsgnr: Description....

Page: 2

Date: 23 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12 License : KW-06061297 License To : CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018,ACI 318-14,TMS 402-16

Concrete Stem Rebar Area Details

Bottom Stem As (based on applied moment):

Vertical Reinforcing

Horizontal Reinforcing

One layer of :

#4@ 12.50 in

#5@ 19.38 in

#6@ 27.50 in

(4/3) * As:

0.3642 in2/ft 0.4856 in2/ft 0.25 in2/ft

Min Stem T&S Reinf Area 1.728 in2

200bd/fy: 200(12)(6.25)/60000: 0.0018bh: 0.0018(12)(8):

0.1728 in2/ft ========= Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft Horizontal Reinforcing Options:

0.3642 in2/ft 0.4 in2/ft 0.8467 in2/ft

#4@ 25.00 in #5@ 38.75 in #6@ 55.00 in

Two layers of:

Footing Data

Required Area:

Provided Area:

Maximum Area:

1 ooting L	ata			
Toe Width		=	3.	50 ft
Heel Width		=	1.	17
Total Footing	y Width	=	4.	67
Footing Thick	kness	=	12.	00 in
Key Width		=	0.	00 in
Key Depth		=	0.	00 in
Key Distance	e from Toe	=	0.	00 ft
	,500 psi	Fy =		00 psi
Footing Cond	crete Density	/ =	150.	00 pcf
Min. As %		=	0.00	18
Cover @ Top	2.00	@ E	3tm.=	3.00 in

Footing Design Results

		Toe	Heel
Factored Pressure	=	1,450	189 psf
Mu': Upward	=	83,393	0 ft-#
Mu': Downward	=	30,503	965 ft-#
Mu: Design	=	2,477	965 ft-#
Actual 1-Way Shear	=	17.32	19.26 psi
Allow 1-Way Shear	=	75.00	40.00 psi
Toe Reinforcing	=	# 4 @ 6.00 ii	n
Heel Reinforcing	=	None Spec'd	
Key Reinforcing	=	None Spec'd	
Footing Torsion, Tu		=	36,616.50 ft-lbs

Footing Allow. Torsion, phi Tu = 8,640.00 ft-lbs If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 9.25 in, #5@ 14.34 in, #6@ 20.36 in, #7@ 27.77 in, #8@ 36.56 in, #9@ 46

Heel: Not req'd: Mu < phi*5*lambda*sqrt(fc)*Sm

Key: No key defined

Min footing T&S reinf Area Min footing T&S reinf Area per foot 1.21 in2 0.26 in2 /ft

If one layer of horizontal bars:

If two layers of horizontal bars:

#4@ 9.26 in #5@ 14.35 in #6@ 20.37 in #4@ 18.52 in #5@ 28.70 in #6@ 40.74 in

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title F4 Dsgnr: Description....

Page: 3 Date: 23 DEC 2019

This Wall in File: i:\work\cses engineering\jobs\walkey\4270.rpx

RetainPro (c) 1987-2019, Build 11.19.11.12 License: KW-06061297 License To: CSES, Inc

Cantilevered Retaining Wall

Code: IBC 2018, ACI 318-14, TMS 402-16

			ERTURNING			RES	SISTING	
Item		Force lbs	Distance ft	Moment ft-#		Force lbs	Distance ft	Moment ft-#
HL Act Pres (ab water tb	1)	2,500.0	3.33	8,333.3	Soil Over HL (ab. water tbl)	562.9	4.42	2,486.1
HL Act Pres (be water tb Hydrostatic Force	l)				Soil Over HL (bel. water tbl) Watre Table		4.42	2,486.1
Buoyant Force	=				Sloped Soil Over Hee =			
Surcharge over Heel	=				Surcharge Over Heel =			
Surcharge Over Toe	=				Adjacent Footing Load =			
Adjacent Footing Load	=				Axial Dead Load on Stem =			
Added Lateral Load	=				* Axial Live Load on Stem =			
Load @ Stem Above Soi	=				Soil Over Toe =	218.8	1.75	382.8
	=				Surcharge Over Toe =	350.0	1.75	612.5
					Stem Weight(s) =	900.0	3.83	3,450.0
T-4-1	U to	0.500.0			Earth @ Stem Transitions =			
Total	=	2,500.0	O.T.M. =	8,333.3	Footing Weight =	700.1	2.33	1,633.6
					Key Weight =			
Resisting/Overturning				1.57	Vert. Component =	966.0	4.67	4,508.4
Vertical Loads used for	or 50	ii Pressure =	3,697.7	lbs	Total =	3.697.7 lbs	R.M.=	13.073.4

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus

250.0 pci

Horizontal Defl @ Top of Wall (approximate only)

0.055 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.

John S. Apolis, P.E.

CSES, Inc.

φv: 0.75

Job number:

2019.089

Project: Owner:

4270

Date: Page number:

19-Dec-19 F22

SLAB DESIGN (Uniform Load, Simple Span)

2015 INT. Building Code (IBC)

ACI 318

Beam Description:

TO AT		**	
Ma	terial	Pro	perties:

Fy: 60000 psi Es: 29000000 psi B1: 0.85

fc: 2500 psi Ec: 2850000 psi

φm: 0.9

Geometry and Loads:

Span: DL unit load: Add'l unif. DL: Point DL: Point Location:

Tributary Width: 1 ft LL unit load: 50 psf Add'l unif. LL:

Point LL:

lb/ft lbs

2 ft

Depth: 8 in <u>d:</u> 5 in

Width: 12 in

Force analysis:

Mu:

43200 in-lbs

12 ft

100 psf

lb/ft

lbs

Vu:

1200 lbs

Reinforcement:

Center Bars (1)As: 0.20

#4 In^2

0.002 ρ:

Design:

0.46 in tensile strain: 0.025 φMn: 50,565 in-lbs φVc: 4500 lbs

0.54 in c: 0.005 OK

43,200 OK

σVn: 4500 lbs Shear Reinforcement Required for: -5.3 ft from supports.

Deflections:

Ig: 512 In^4 Icr: 36 In^4

Mcr:

>

48000 In-lbs 512 In^4

1200 OK

LL Deflection: 0.0160 in DL Deflection: 0.0320 in

L/ λΔ:

Ie:

9007 OK 2.00

TL Deflection: 0.0799 in L/

1801 OK, > L/360

John S. Apolis, P.E.

CSES, Inc.

Job number:

2019.089

Project: Owner:

4270

Date: Page number:

23-Dec-19 F23

CONCRETE BEAM DESIGN (Uniform Load, Simple Span)

2015 INT. Building Code (IBC)

ACI 318

Beam Description:

GRADE BEAM

φv: 0.75

Material	Properties:
	Fv

Fy:	60000 psi
Es:	29000000 psi
R1.	0.85

fc: 2500 psi Ec: 2850000 psi φm: 0.9

Geometry and Loads:

Span:	12 ft
DL unit load:	100 psf
Add'l unif. DL:	lb/ft
Point DL:	0 lbs
Point Location:	0 ft

Tributary Width: 12 ft LL unit load: 50 psf Add'l unif. LL: lb/ft Point LL: Ibs

Depth: 18 in 15 in

Width: 18 in

Force analysis:

Mu:	518400	in-lbs

Vu: 14400 lbs

Reinforcement:

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM						
Top Rebar:	(4)	#5	Bottom Rebar:	(4)		#5
As':	1.23	In^2	As:	1.23	In^2	
ρ':	0.004		ρ;	0.004		
Ties:	(1)	#3	@ 45 in o.c	OK		

Design:

a:	1.92	in		c:	2.26 in
tensile strain:	0.017		>		0.005 OK
φMn:	930,237	in-lbs	>		518,400 OK
φVc:	20250	lbs		φVs:	16567 lbs
φVn:	36817		>		14400 OK
Shear Reinforcem	ent Required for:	1.8 ft	from supports.		

1.8 ft from supports.

Deflections:

Ig: Icr:	8748 In^4	Mcr:	364500 In-lbs
ICT:	1894 In^4	Ie:	4277 In^4
-41	0.0220		

LL Deflection: 0.0230 in DL Deflection: 0.0459 in TL Deflection: 0.1002 in

L/ 6270 OK $\lambda\Delta$: 1.68 L/ 1437 OK, > L/360

PILE REINFORGEN	MENT DESIGN			
14"Ø PILFS	Ag = 77 Ziª =	154 m²	d = 14"-i	3" = //"
(4)× 0,2 in² = 0.	.8 û ² X			
0.01 × 154 în 2 = 0.08 × 154 în 2 =				
(4)× 0.31 in 2 = 1.				
$(6) \times 0.31 in^{2} = 1.$	86 in 2 V	(6) #5 V	ERTICAL	BARS W/
d/2 = 11"/2 =	5.5″	#3 TIES	Q 5" Q.	_

CONSULTING STRUCTURAL ENGINEERING SERVICES

Residential and Commercial Structural Design

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com Project No. <u>2019. 089</u> Date <u>1/3//9</u>
Project Name <u>4270</u>

Comments _____

Revision ______ Page Fag4

CALCULATING DEAD LOAD SLAB: 100 PSF × 2300 FT = 230000 16 GRADE BEAMS: (1.5 ×1.5 × 150 ACF) × 166' = 56025 16 RET. WALLS: 1863 16/FT × 159 = 296217 16 WOOD WHUS: (20' × 236') × 12 PSF = 5664016 WOOD FLOORS: (2300 FT = 2 FLOORS × 12 PSF) = 4766416 ROOF = (2300 FT = 12 PSF) = 27600 16 ---> TOTAL = 71414616 = P CALCULATING SLIDING FORCES F = 3703 16/FT x 24 + 3923 16/FT x 22 + 3703 16/FT x 28 = 278862 16 P× 0.35 = 24995/16 < DEAD LOAD RESISTING SLIDING F - 24995/16 = 28911 16 CALCULATING PASSIVE FORCE Vo = 350 pcf × 2.5 × 2.5/2 - 350 pcf × 1 × 1/2 = 918 A1+ Fp = 918 pif x 82 = 75276 16 > 28911 16 V

CONSULTING STRUCTURAL ENGINEERING SERVICES

Residential and Commercial Structural Design

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com

Project No. <u>2019.089</u> Date <u>2/20/20</u>
Project Name <u>4270</u>

Comments _____

Revision _____ Page <u>F & 5</u>

Melissa Lookups: Personator Result

Name & Address Verified

AS01,AS16,DA00,DA10,GS05,NE05,NS02,VR01

Name at Address Millad Llc Name & Address Match (VR01)

Address 4270 E Mercer Way

Mercer IslandWA98040-3824 Address Verified (AS01)

Property Information Owner: Millad V Llc

MAK (Melissa Address Key) 6766954241

Lat. & Long. 47.570628 -122.208266

Geocoded to Rooftop Level (GS05)

Address Type Residential

Postal Carrier Route C006 (DPC: 70-5)

U.S. Representative Adam Smith (D) (09)

Census Entities County 53033 King

County Subdivision 92931 Seattle East CCD

Tract 0245.00 Block 1001

City, Place or Town 5345005 Mercer Island

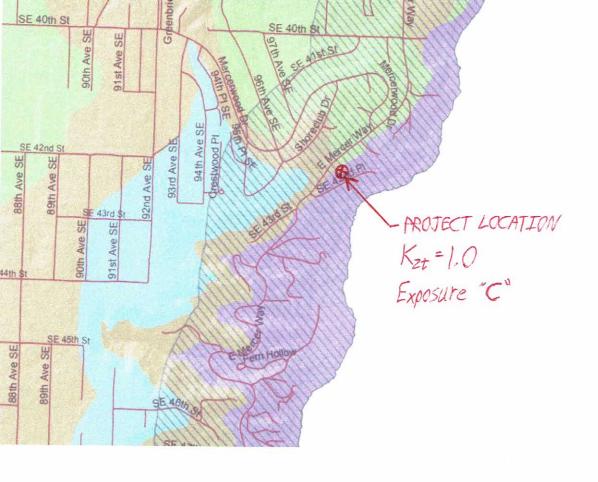
Unified School District 04980 Mercer Island School District

State Upper District 041

State Lower District 041

Delivery Post Office Mercer Island

3040 78Th Ave Se Mercer Island WA 98040


206-232-8834

View Google Map and Picture (3 credits)

Hide Markers

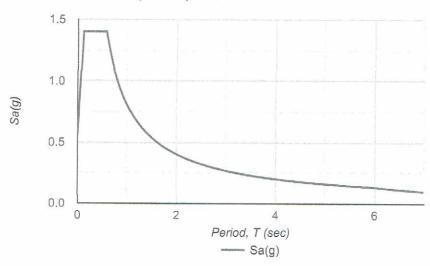
Download (Print) Map

Address Location

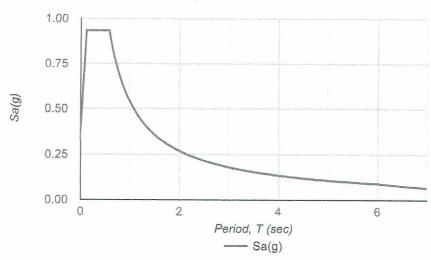
OSHPD

4270 E Mercer Way, Mercer Island, WA 98040, USA

Latitude, Longitude: 47.5706712, -122.20809150000002



11/20/2019, 12:06:11 PM
ASCE7-10
ii .
D - Stiff Soil


Туре	Value	Description
SS	1.401	MCE _R ground motion. (for 0.2 second period)
S ₁	0.538	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.401	Site-modified spectral acceleration value
S _{M1}	0.807	Site-modified spectral acceleration value
S _{DS}	0.934	Numeric seismic design value at 0.2 second SA
S _{D1}	0.538	Numeric seismic design value at 1.0 second SA

Туре	Value	Description
SDC	D	Seismic design category
F_a	1	Site amplification factor at 0.2 second
F_{v}	1.5	Site amplification factor at 1.0 second
PGA	0.578	MCE _G peak ground acceleration
F_{PGA}	1	Site amplification factor at PGA
PGA_M	0.578	Site modified peak ground acceleration
T_{L}	6	Long-period transition period in seconds
SsRT	1.401	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.463	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	3,273	Factored deterministic acceleration value, (0.2 second)
S1RT	0.538	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.576	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	1.308	Factored deterministic acceleration value. (1,0 second)
PGAd	1.268	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.958	Mapped value of the risk coefficient at short periods
C _{R1}	0.933	Mapped value of the risk coefficient at a period of 1 s

MCER Response Spectrum

Design Response Spectrum

DISCLAIMER

While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

John S. Apolis, P.E.

CSES, Inc.

Job number: 2019.089

Project:

4270 Ardekani

Date: 20-Nov-19

1 rojecti	VA / O IXI GENERAL	***			Date.	ZU-INOV-1	9
Architect:				Pag	ge number:	L1	
Lateral Loads Des	ign per ASC	CE 7-10, V	Wind: Se	ection 27	Seismic:	Section	12
(Directional Procedu	re Part 1)				2015 Se	eattle Buildir	ng Code (SBC)
WIND LOADS	110	mph Basic	Wind Speed	l			2015 NDS
$P_S = lambda * Kzt * P_S$	s(30) * 0.6	Exposure	C	Roof Slope:	0.00	: 12 =	0.0
Least Horizontal Dim	ension, feet:	27	Mean	Roof Ht, feet:	32		(degrees)
Risk Category:	II		k	Zt =	1.00		(5 /
Directionality Factor:	Kd =	0.85	Gust-Eff	ect Factor:	G =	0.85	
Enclosure Classification	n:		Enclosed		Gcpi =		-0.18
]	Horizontal wind	pressure on v	valls at spec	ified heights			
Significant Heights of		EQ 27.3-1	Velocity Pr	essure (psf):	EQ 27.4-	1 Design Pro	essures (psf):
1	10		22.4			17.6	
2	20		23.7			18.5	
3	30		25.8			19.9	
approximate the second				e on roof of st	tructure.		
	al roof pressure:		psf				
	/uplift pressure:		psf				
Vertical/uplift pressur							
(Equivalent Lateral F							
SEISMIC LOADS	Ie	1.0	R =	6.5	ASCE 7-10), Table 12.2	1.1
Seismic Parameters	Group I	Site Class:	D	41 254			
per ASCE 7-10)	PGA (.2 sec)	1.401	Fa =	1.00		Table 11.4	
	PGA (1 sec)	0.538	Fv =	1.50	ASCE 7-10	Table 11.4	-2
Seismic Design Categorie							
water to a second of the second	Based on Sds:	D		ased on Sd1:			
PGA's based on peak gr		ons per latest			(based on l	at/lon).	
$S_S =$	1.4010		Sms	= Fa * Ss =	1.40	Equation 11	.4-1
S1 =	0.5380		Sm1	$= F_V * S_1 =$	0.81	Equation 11	.4-2
Equations 11.4-3, 11.4-4	Sds = 2	2/3 * Sms =	0.93	Sd1 = 2/	3 * Sm1 =	0.54	
Equation 12.14-11			0.144	Building per			12.8-7

Base Shear = %V * W * 0.7 = 6.84psf, uniformly distributed over floor area (0.7 reduction factor per ASCE 7-10, Section 2.4.1, Eq 5 (seismic vertical distribution per IBC eqs 12.8-11 & 12)

	Roof or Floo	Wall DL (psf)	Story Height		Lateral
Base = top of foundation	DL (psf)	dist. over floor	area Above Base (ft)		Load (psf)
Roof	16	8	30		3.57
Second floor	12	10	20		2.18
First floor	12	10	10		1.09
					0.00
Total Seismic DL:	68			Sum	6.84

L=4.5 + 4' SHEAR WALL DESIGN - NORTH WALL-UPPER FLOOR P. = [(5.5 × 5) × 19.9 psf] = 54816 P= [(52 × 7') × 3.57 ps+] = 1300 16 = CONTROLS V = 1300 16/8.5' = 153 PH < 230 PH SWI UPLIFT = 153 PIX × II' = 1683 16 < 1705 16 CS16 < 3900 16 MSTC48 B3 MAIN FLOOR - L= 3 + 3 PW = [(4.5 × 11) × 18.5 ps+7 + 548 16 = 1464 16 PE = [(8 × 28) × 2.18 ps+] + 1300 16 = 1789 16 = CONTROLS V= 1789 4/6 = 299 114 V* = 299 ALT / 1.25-0.125 × 10.5/31 = 368 ALT < 550 DIT SW3 UPLIFT = 1683 16 + [(368 NF × 10.5)] = 5547 16 < 5820 16 HOUS 46435 16 SB78 ×24

CONSULTING STRUCTURAL ENGINEERING SERVICES

Residential and Commercial Structural Design

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com Project No. <u>2019.089</u> Date <u>II /20/19</u>
Project Name <u>4270</u>

Comments ____

Revision _____ Page _______

SHEAR WALL DESIGN - EAST WALL - UPPER FLOOR L=28'	
PW = [(5.5' × 11') × 19.9 psf] = 1204 16	
PE = (11 × 34 × 3.57 15+) = 1336 16 = CONTROLS	
V=133616/28'=48114 < 230 N4 SWL	
UPLIFT = 48 NF × 10.5' = 504 16 < 1705 16 CS16	_
MAIN FLOOR - L = 28	
PW = [(11 × 18') × 18,5 psf] + 1204/b + (251816 × 14/36') = 58471	ik € CONTROLS
P _E = [(18' × 70') × 2.18 PSF] + 1336 16 + (3006 16 × ^{14'} /36') = 525216	
V=5847 16/28'=209 117 <230 114 SWI	
UPLIFT = (209 pif × 10.5') + 504 16 = 2699 16 < 4340 16 < 3410 16	HDU5
LOWER FLOOR + L= //	<u>V)(210</u>
PW = (5847 16 × 16/28) + [(11 × 5) × 17.6 PSF] = 4310 16 = a	ONTROLS
P _E = (5252 16 × 16/28') + [(11' × 32') × 1.09158] = 3385 16	
V=43/0 16/11'=392 NH < 550 NH <u>5W3</u>	
UPLIFT = 2699 16 + 392 114 × 10' = 6617 16 < 8030 16	HOUII
-000 TB	>D.J.>5U.

CONSULTING STRUCTURAL ENGINEERING SERVICES

Residential and Commercial Structural Design

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com

Project No. 2019.089	Date 11/20/19
Project Name <u>4270</u>	
Commonto	

Revision _____ Page _______

SHEAR WALL DESTON - SOUTH EAST WALL - UPPER FLOOR L = 11.5 PW = [(11,5 × 5.5) × 19,9 psf] = 1258 16 Pr = (11.5 × 82) × 3.57 PSF] = 336 716 = CONTROLS V = 3367 16/11.5'= 293 NF < 350 NF SW2 UPLIFT = 293 N+ × 10.5' = 307716 < 3900 16 MSTC48 B3 SOUTH MID WALL - UPPER FLOOR - L = 7+2' P. = [(5.5×5.5')×19.9 PSF] = 602 16 PE = [(4×67') × 3.57 PS+] = 957 16 ← CONTROLS V = 957 16/9' = 107 M4 V* = 107 HF/125-0.125 × 5/2' = 115 PH < 230 PH SW1 11PLIFT = 115 M+ × 10-5 = 1208 16 < 1705 16 CS16 MAIN FLOOR - L = 8.5 + 3.5 Pw = 602 16 + [(19/27') × 1258 16] + [(13'×11) × 18.5 PSF] = 4/33 16 & CONTROLS PE = 95716 + [(19/27) x 336716] + [(4'x82) x 2.18 PS4] = 404216 V = 4/33 16/12 = 345 Nf < 350 Nf SW2 UPLIFT = 1208 16 + (345 AH × 10.5') = 483/16 < 647516 CMST14 < 5820 16 HUU8 < 6435 16 SB78×24

CONSULTING STRUCTURAL ENGINEERING SERVICES

Residential and Commercial Structural Design

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com

Project No. <u>2019-089</u>	Date_///20/19
Project Name 4270	/ /

Comments __

Revision ______ Page _______

SHE	AR	WA	11	DE	SIB	1	- 5	OU	TH	WE	57	WAL	1-	UP	PER	, ,	FL	OOR		′ = £	5.76	5'+	4.0	15'		
P,	, =	[(2	1 _{× 1}	5.5))×	19.	9,	- (157] =	21	9	16														
		(5																								
V	=	750	D 16	/	10	=	75	5,	OLF	<	ξ	30	ρΙ-,	f	-4	5U	(1									
UF	LI)	FT	Ξ	7.	511	17	x /	0.5	/ =	7.5	38	lb	<	ι.	705	5 /	Έ	<u></u>	16							
MF	IN	' FL	<u>00</u> 1	R	- 4	<u> </u>	5.	75	1+	4.2	5 ¹															
Pi	v =	á	114	16	+[(a	'×	1')	×	18.	5 p	SF	7 :	Ė	62	6	16									
Pī	=	7	50	16	+5	(3	/×	42	')×	2,	18	PSt	-7	=	10 ö	25	16	ح	-01	VIX	rocs	-				
		102			,																					
V		00	10	1	10		160	,,,	/!	<i>I.</i>		0 .		L.	ļ <u> </u>	- 21	v.				i					
														i									ļ			
UP											IF	×		i					۲	39	09	16	_/	1570	748 B	13
	LI	FT	=	7.	38	16	†	(1	02.	5 p			10-:	5 ') <i>=</i>	18	360	5 16	٧	39	00	16	_/\.	ISTO	748 B	33
	LI		=	7.	38	16	†	(1	02.	5 p			10-:	5 ') <i>=</i>	18	360	5 16	Υ	39	00	16	_/\	1570	748 <u>6</u>	83
	LI	FT	=	7.	38	16	†	(1	02.	5 p			10-:	5 ') <i>=</i>	18	360	5 16	χ	39	OJ	16	_/1	1570	<u> </u>	13
	LI	FT	=	7.	38	16	†	(1	02.	5 p			10-:	5 ') <i>=</i>	18	360	5 16	Υ	39	00	16	_^	1570	<i>48</i> 6	33
	LI	FT	=	7.	38	16	†	(1	02.	5 p			10-:	5 ') <i>=</i>	18	360	5 16	V	39	00	16		1570	<i>48</i> 6	33
	LI	FT	=	7.	38	16	†	(1	02.	5 p			10-:	5 ') <i>=</i>	18	360	5 16	ν	34	00	16	A	IST C	<i>.48</i> g	33
	LI	FT	=	7.	38	16	†	(1	02.	5 p			10-:	5 ') <i>=</i>	18	360	5 16	V	34	00	16		IST C	.480	33
	LI	FT	=	7.	38	16	†	(1	02.	5 p			10-:	5 ') <i>=</i>	18	360	5 16	V	34	00	16		IST C	<i>48</i> 6	33
	LI	FT	=	7.	38	16	†	(1	02.	5 p			10-:	5'') <i>=</i>	18	360	5 16	V	34	00	16		ISTC	.480	33
	LI	FT	=	7.	38	16	†	(1	02.	5 p			10-:	5'') <i>=</i>	18	360	5 16	V	39	00	16		IST(786	33

CONSULTING STRUCTURAL ENGINEERING SERVICES

Residential and Commercial Structural Design

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com

Project No. <u><i>3019.039</i></u>	Date 11 /20/19
Project Name <u>4270</u>	
Comments	

Revision ______ Page __________

SHEAR WALL DESIGN - EAST MID WALL - UPPER FLOOR L = 5-5' + 4' P. = [(23 × 5.5') × 19.9 ps+] = 2518 16 P= = [(11' × 34) + (13' × 36') 7 × 3.57 ps+ = 3006 16 + controls V = 3006 16/9.5 = 317 NF < 350 NF SW2 11PLIFT = 3/7 N/F × 10.5 = 3323 16 < 3410 16 (2) CS/6 WEST STAIR WALL - UPPER FLOOR L=8 Pm = [(30 × 5,5) × 19.9 pst] = 3284 16 P= [(12 × 35)+(18 × 33')] × 3.57 PS+ = 3620 16 < CONTROLS V = 3620 16/8 = 453 PH < 550 PH 5W3 UNLIFT = 453 NF × 10.5 = 4757 16 < 6475 16 CMST14 WEST WALL - UPPER FLOOR L= 9' PW = (18 * 5.5') × 19.9 158 = 1971 16 PE = [(18 × 33) × 3.57 PS+] = 2121 16 € CONTROLS V = 2/2/ 16/9 = 236 PIF < 350 PH 5W2 UPLIFT = 236 PH × 10.5 = 2478 16 < 3410 16 (2) (5/6

CONSULTING STRUCTURAL ENGINEERING SERVICES

Residential and Commercial Structural Design

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com

Project No. 2019.089	Date 12/17/19
Project Name <u>4270</u>	
Comments	

SHEAR WALL DESIGN - EAST STAIR WALL - MAIN FLOOR L = 13' P, 1 = [(23 × 11') × 18.5 px] + [2518 16 × (20/36')] = 6220 16 + CONTROLS P= = [(23' × 58') × 2.18 ps+] + [3006 16 × (22/36')] = 4746 16 V = 6220 16/13 = 474 plf < 550 plf SW3 UPLIFT = 479 PIF × 10.5' = 5030 16 < 6475 16 SMST14 < 643516 5B78 x24 LOWER FLOOR L= 15.5 +8 PW = 23 × 5 × 17.6 PS+ 7 + 6220 16 = 8244 16 = CONTROLS P= = [23' x 32' x 1.09 psf] + 4746 16 = 5549 16 V = 8244 16/23,5 = 351 NH < 550 NH SW3 UPLIFT = 35/ NA * 10.5' = 3686 16: < 4340 16 HOUS WEST STAIR WALL - MAIN FLOOR L=8 Pw = [(8 ×11) × 18,5 ps+] + 328416 = 49/216 = CONTROLS P= = 3620 16 + [(8' x 35') x 2.18 PS+] = 423/16 V = 49/2 16/8 = 6/4 1/4 < 7/0 1/4 5W3X UPLIFT = 4757 16 + (614 PIF × 111) = 15/1 16 < 14445 16 140W14 < 17080 16 PAB8

CONSULTING STRUCTURAL ENGINEERING SERVICES

Residential and Commercial Structural Design

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com

Project No. 2019.089	Date_	12/17/19
Project Name 4270		. 176

Comments —

Revision _____ Page _________

SHEAR WALL DESIGN-WEST STAIR WALL-LONIER FLOOR L=10' PW = [(8 × 5) × 17.6 PSF] + 49/2 16 = 56/6 16 = CONTROLS PF = 4231 16 + [(8 × 28') × 1.04 PSF] = 4476 16 V = 56/6 16/10 = 562 NF < 710 NF SW3X VPLIFT = 562 pH * 11 = 6182 B < 8030 H HOWIL WEST ELEVATOR WALL-MAIN FLOOR L=6' P. = [(18 × 11') × 18,5 PS+] = 3664 16 = CONTRAIS PE = [(18 × 28) × 2.13 pst] = 1099 16 V = 366416/6'= 61/ PIF < 710 PIF SW3X UPLIFT = 6/1 PIF × 11 = 6721 16 < 9215 16 CMST 12 LOWER FLOOR L=6 Pw = 3664 16 + [(18' × 5') × 17.6 PS+] = 5248 16 = CONTROLS PE = 1099 16 + [(18' × 28') × 1.09 15+] = 1649 16 V = 5248 16/6 = 88/ PH < 9/0 PH SW5 UPLIFT = 672/16 + 88/018 × 10 = 1553/16 < 16735.16 HO19 < 21620 1/2 PAB9

CONSULTING STRUCTURAL ENGINEERING SERVICES

Residential and Commercial Structural Design

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com Project No. <u>2019, 084</u> Date <u>12/17/19</u>
Project Name <u>4270</u>

Comments _____

Revision Page 18

SHEAR WALL DESIGN - WEST WALL MAIN FLOOR L=9" PW = 197/ 16 + [(151 × 111) × 18.5 PSF] = 5024 16 < CONTROLS PE = 212/16 +[(15'x 28') x 2.18 pst] = 3037/6 V = 5024 16/9'= 559 PH < 710 PH SW3X UPLIFT = 2478 16 + 559 RIF x11' = 8627 16 < 9260. 16 HDU14 NORTH WEST WALL - UPPER FLOOR L= 19" Pw=(14' x 5.5') x 19.9 ost = 1533 16 P= = [(14 × 82) × 3.57 PS+] = 4099 16 = CONTROLS V = 4099 16/19 = 2/6 DIF < 230 DIF SWI 11PLIFT = 216 NIF × 11 = 2376 16 < 3410 16 (3) CS16 MAIN FLOOR L=19 Pw = [(14 ×11') × 18.5 ps+] + 1533 16 = 4382 16 P_ = [(14 * 82) × 2.18 PS+] + 4099 16 = 6602 16 = CONTROLS V = 6602 16/19' = 348 NF < 350 NF SW2 UPLIFT = 2376 16 + 348 NF × 11 = 6204 16 < 8030 16 HOW H 3828 16 < 4340 16 8030 16 581 × 30 HOUS

CONSULTING STRUCTURAL ENGINEERING SERVICES

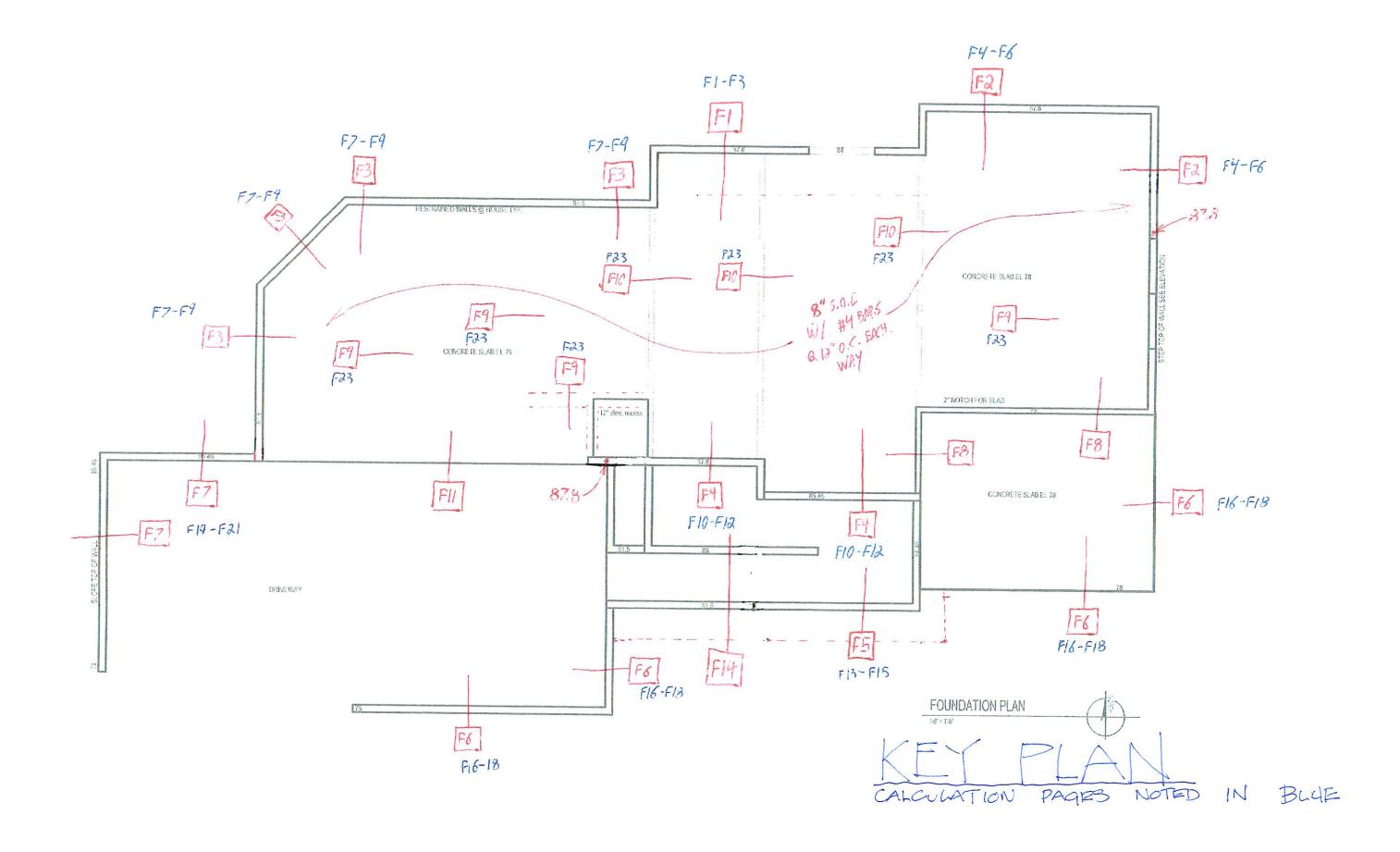
Residential and Commercial Structural Design

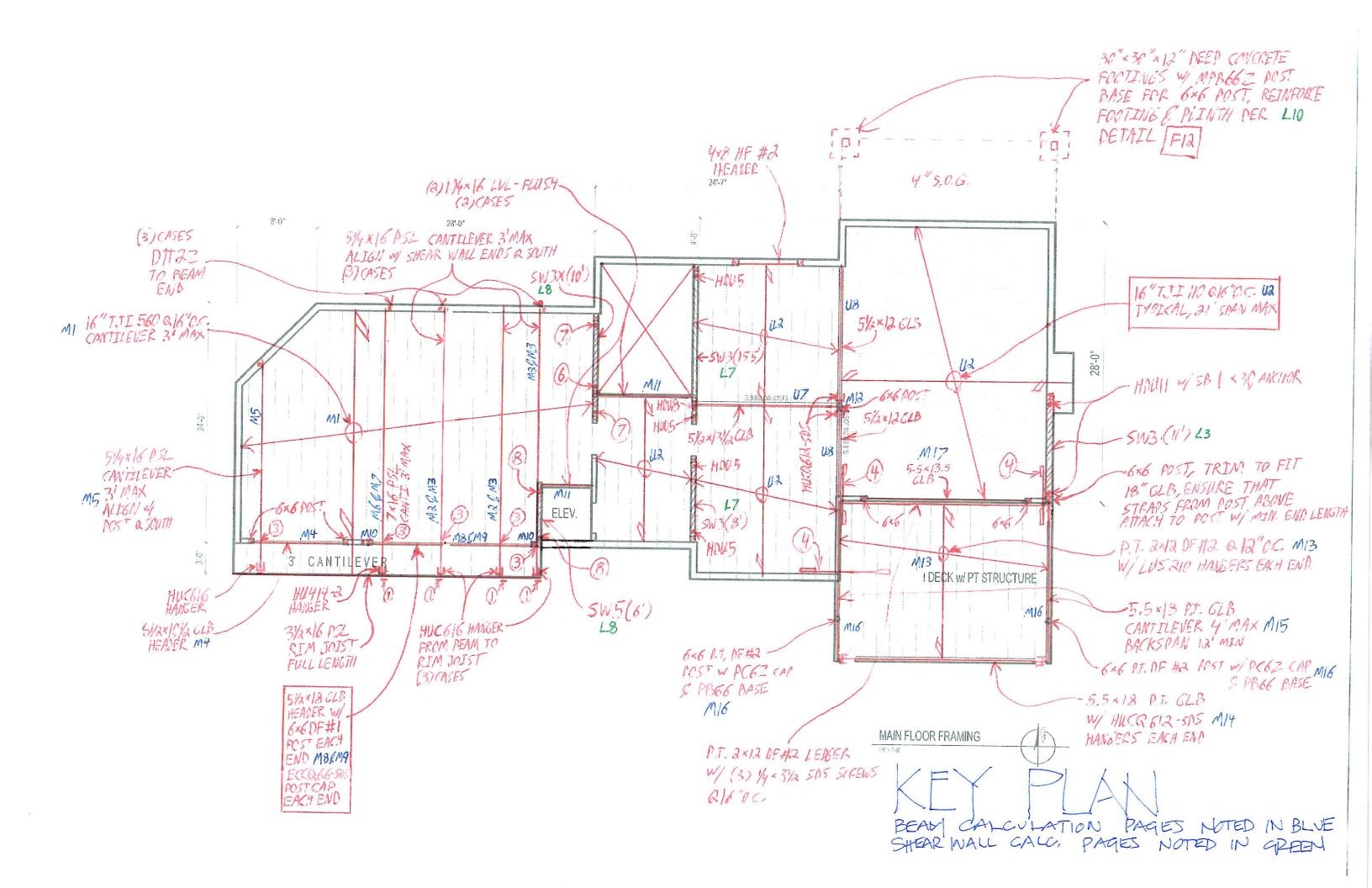
6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com

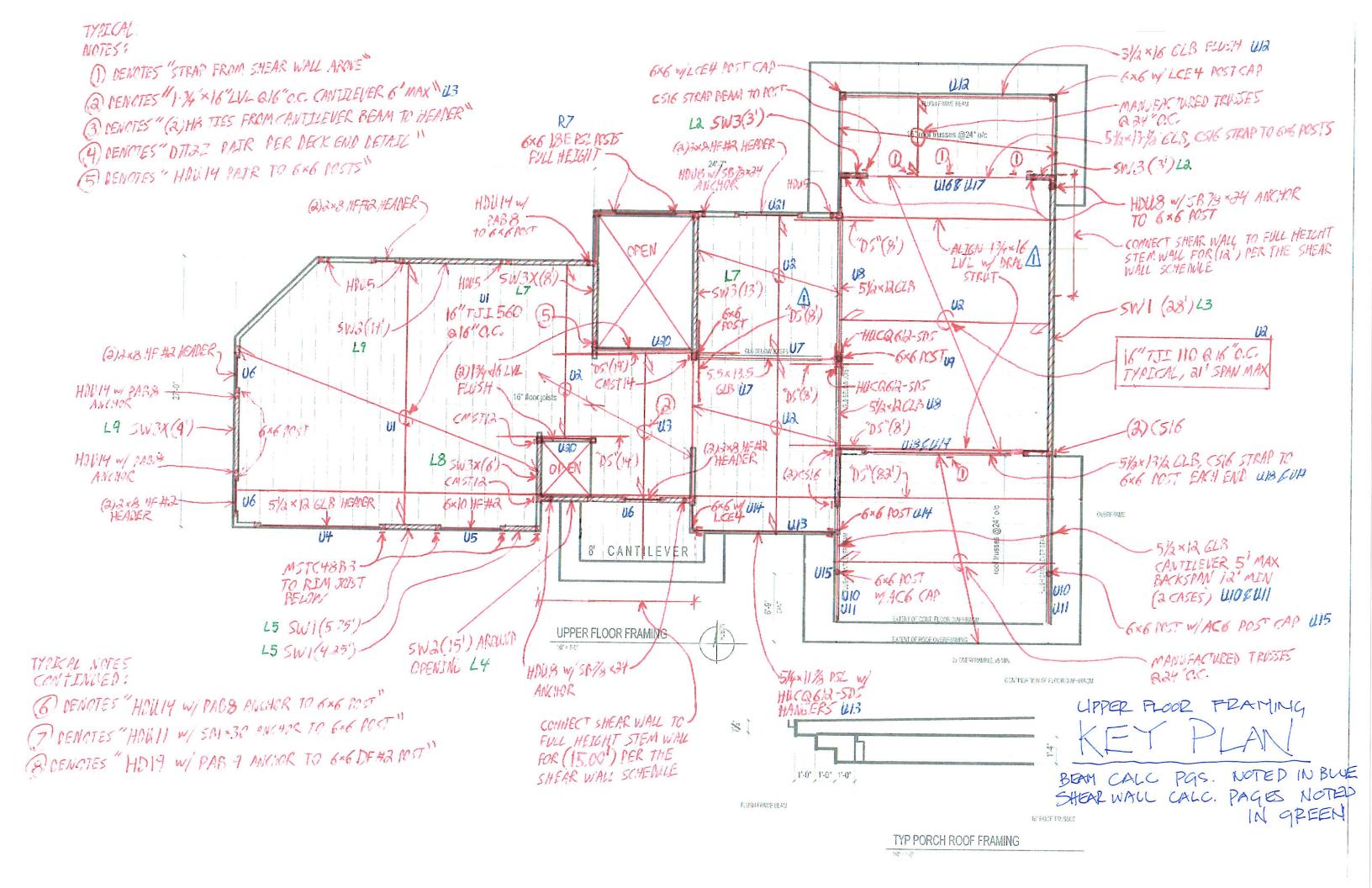
Project No. 2019,089	Date <u>/2/17//9</u>
Project Name <u>4279</u>	
Comments	
Davidalan	D L9

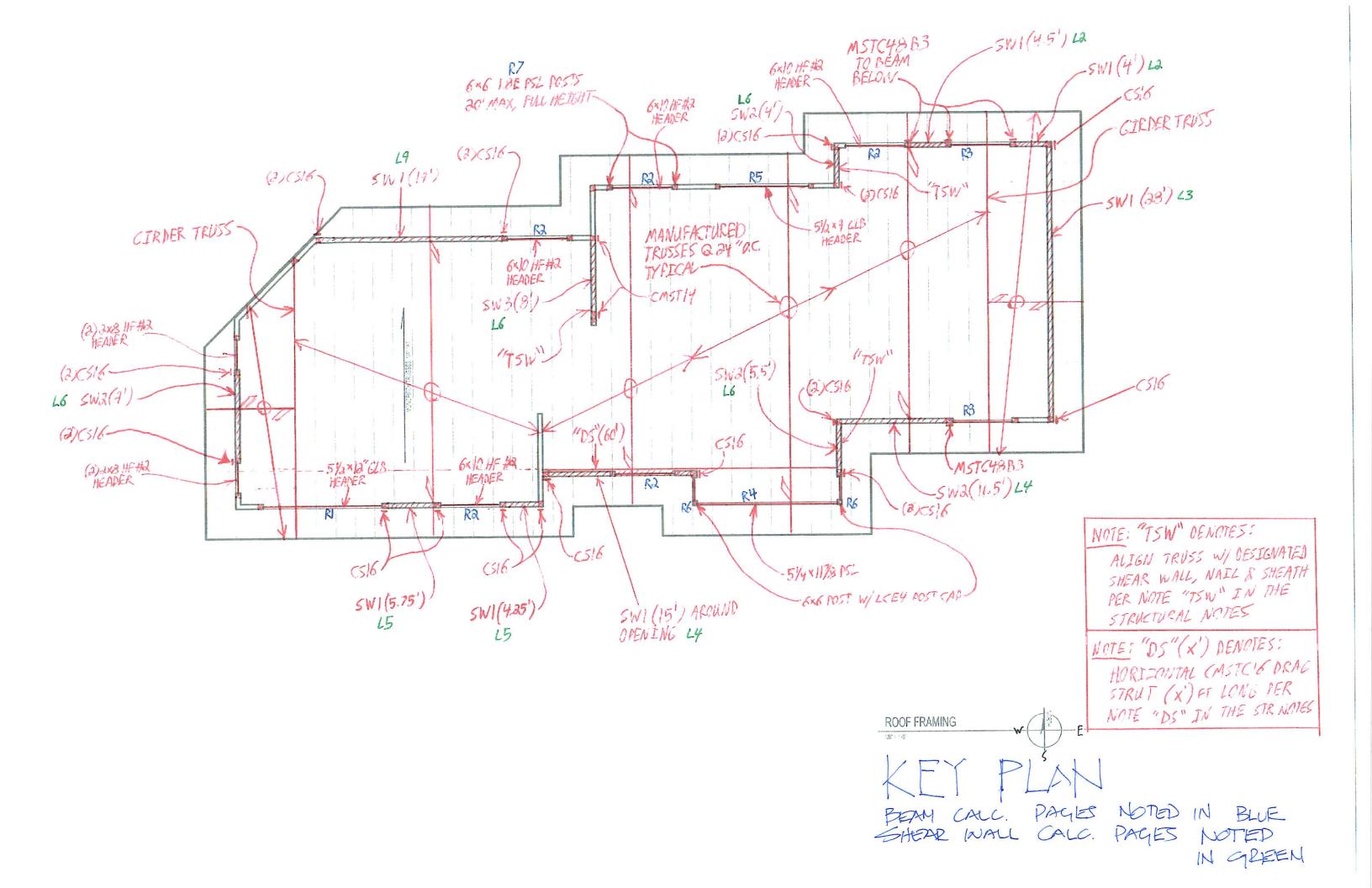
POST FOOTING DESIGN	4	
	44FT 2 × 2.18 DS+ = 96 16	SEISMIC LOAD
6'x 2' = 12'FT ² ,	12 FT = 18.5 PSF = 222 16	WIND LOAD CONTROLS
MAX POINT LOAD =	3622 16 - SEE PAGE WIZ	
MAX MOMENT = 22	1216 × 10 FT = 2220 16-FT	< 2795 16 MPB662
• TRY 24" x24" e=	2220 16 +1/3622 16 = 0.6	
	46 < e < 42	
$2 \max = 2 \times 36221$ $3 \times 2 \times 2 \times 2 - 6$	= 3096 ps+ X	
10		
• TRY 30"×30" 4	16 = 0.417 , 4/2 = 1.25	, 4/6 < C < 4/2
2 _{MAX} = 2 × 3622 16	= 1510 PSF < 20	100 PSF V
J. 8. J. (2)	<i>(7.61)</i>	
• USE 30	2" × 30" × 12" DEEP FOOTIN	65 MIN.

CONSULTING STRUCTURAL ENGINEERING SERVICES


Residential and Commercial Structural Design


6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com


Project No. <u>2019, 089</u>	Date 12/19/19
Project Name	
Comments	


Revision_

_ Page _ *L10*

